Research Article
BibTex RIS Cite

Sürtünme Karıştırma Kaynağı ile Birleştirilen AISI 316 Paslanmaz Çelik ve Karbonlu Çelik Çiftlerinin Mekanik Özelliklerinin ve Mikroyapılarının İncelenmesi

Year 2021, Volume: 36 Issue: 3, 719 - 733, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005507

Abstract

Sürtünme karıştırma kaynağı, belirli bir hızda dönen bir pimin metaller arasında sürtünmesiyle oluşan ısıyı kullanarak, benzer veya benzer olmayan malzemeleri katı halde kaynaklamak için kullanılan bir katı hal kaynak tekniğidir. Kaynak, kaynak yapılacak malzemelerden daha sert olan ve tükenmeyen bir pim ile yapılır. Bu çalışmada AISI 316 östenitik paslanmaz çelik ve sade karbonlu çelikler sürtünme karıştırma kaynağı ile birleştirilmiştir. Birleştirilen çelik plakalar 3 mm kalınlığa, 60 mm genişliğe ve 120 mm uzunluğa sahiptir. Deneylerde omuz çapı 16 mm, pim uzunluğu 2,7 mm olan eşkenar üçgen profilli tungsten karbür uç kullanılmıştır. Sürtünme karıştırma kaynağı 710 dev/dak devir sayısı ve 63 mm/dak ilerleme hızında ve takıma 1,5° açı verilerek gerçekleştirilmiştir. Kaynaklı bölgelerinin mikroyapı ve mekanik
özellikleri incelenerek, en uyumlu kaynak çiftinin belirlenmesi amaçlanmıştır. Yapılan mekanik testlerin ve mikroyapı analizlerinin sonuçlarından, en uyumlu kaynak çiftinin AISI 316-AISI 1010 olduğu ortaya çıkmıştır. Mekanik testlerde AISI 316-AISI 1010 çelik çiftinin 618,81 MPa çekme değeri ile diğer kaynak çiftlerinden daha iyi olduğu görülmüştür. Mikroyapıları incelendiğinde tane boyutunun malzemenin mukavemetini büyük ölçüde etkilediği, özellikle büyük tanelerin görüldüğü yerlerde malzemenin mukavemetinin düştüğü gözlemlenmiştir.

References

  • 1. Cam, G., Mistikoglu, S., 2014. Recent Developments in Friction Stir Welding of Al-alloys. Journal of Materials Engineering and Performance, 23(6), 1936-1953.
  • 2. Thomas, W.M., Threadgill, P.L., Nicholas, E.D., 1999. Feasibility of Friction Stir Welding Steel. Science and Technology of Welding and Joining, 4(6), 365–372.
  • 3. Mishra, R.S., Ma, Z.Y., 2005. Friction Stir Welding and Processing. Materials Science and Engineering R., 50, 1–78.
  • 4. Meran, C., Canyurt, O.E., 2010. Friction Stir Welding of Austenitic Stainless Steels. The Journal of Achievements in Materials and Manufacturing Engineering, 43(1), 432-439.
  • 5. Jafarzadegan, M., Feng, A.H., Abdollah-zadeh, A., Saeid, T., Shen, J., Assadi, H., 2012. Microstructural Characterization in Dissimilar Friction Stir Welding Between 304 Stainless Steel and st37 Steel. Materials Characterization, 74, 28–41.
  • 6. Aktarer, S.M., Sekban, M., Küçükömeroğlu, T., 2015. IF Çeliği ile AA6061 Alaşımının Sürtünme Karıştırma Kaynak Yöntemiyle Birleştirilebilirliği. Kaynak Kongresi IX. Ulusal Kongre ve Sergisi Bildiriler Kitabı, Ankara, 20-21 Kasım 2015, 435-445.
  • 7. Reynolds, A.P., Tang, W., Gnaupel-Herold, T., Prask, H., 2003. Structure, Properties, and Residual Stress of 304L Stainless Steel Friction Stir Welds. Scripta Materialia, 48, 1289–1294.
  • 8. Bozkurt, Y., Boumerzoug, Z., 2018. Tool Material Effect on the Friction Stir Butt Welding of AA2124-T4 Alloy Matrix MMC. Journal of Materials Research and Technology, 7(1), 29–38.
  • 9. Basak, H., Kayır, Y., Turkyilmaz, E.H., 2018. Experimental Investigation of the Different Stirring Pin Forms Caused Force and its Effects of Joining on Friction Stir Welding. El-Cezeri Science and Engineering Journal, 4(2), 249–257.
  • 10.Ragu Nathan, S., Balasubramanian, V., Malarvizhi, S., Rao, A.G., 2016. Effect of Tool Shoulder Diameter on Stir Zone Characteristics of Friction Stir Welded HSLA Steel Joints. Transactions of the Indian Institute of Metals, 69(10), 1861-1869.
  • 11.Boz, M., Kurt, A., 2004. The Influence of Stirrer Geometry on Bonding and Mechanical Properties in Friction Stir Welding Process. Materials & Design, 25, 343-347.
  • 12. Elengovan, K., Balasubramanian, V., 2008. Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminium Alloy. Materials & Design, 29, 362-373.
  • 13. Sık, A., Erturk, I., Onder, M., 2010. A Studyinto Effects of Different Parameters on Mechanical Properties in Friction Stir Welding of AA 2024 Aluminium Alloy. Pamukkale University Journal of Engineering Sciences, 16(2), 139-147.
  • 14. Hascalık, A., Caydas, U., Unal, E., Karaca, F., 2007. The Effect of tip Geometry on the Friction Stir Selding of AA 5251 Alloy. Electronic Journal of Machine Technologies, 4, 1-7.
  • 15. Fujii, H., Cui, L., Tsuji, N., Maeda, M., Nakata, K., Nogi, K., 2006. Friction Stir Welding of Carbon Steels. Materials Science and Engineering: A., 429, 50-57.
  • 16. Lienert, T.J., Stellwag, W.L., Grimmet, B.B., Warke, R.W., 2003. Friction Stir Welding Studies on Mild Steel Tool Durability and Steel Microstructure. Supplement to the Welding Journal, 1S-9S.
  • 17. Lakshminarayanan, A.K., 2016. Enhancing the Properties of Friction Stir Welded Stainless Steel Joints Via Multi-criteria Optimization. Archives of Civil and Mechanical Engineering, 16(4), 605-617.
  • 18. Park, S.H.C., Sato, Y.S., Kokawa, H., Okamoto, K., Hirano, S., Inagaki, M., 2003. Rapid Formation of the Sigma Phase in 304 Stainless Steel During Friction Stir Welding. Materials Science, 49, 1175-1180.
  • 19. Meran, C., Kovan, M., Alptekin, A., 2007. Friction Stir Welding of AISI 304 Austenitic Stainless Steel. Materials Science and Engineering Technology, 38(10), 829-835.
  • 20.Bilgin, M.B., Meran, C., 2012. The Effect of Tool Rotational and Traverse Speed on Friction Stir Weldability of AISI 430 Ferritic Stainless Steels. Materials & Design, 33, 376-383.
  • 21.Cho, H.H., Han, H.N., Hong, S.T., Park, J.H., Kwon, Y.J., Kim, S.H., Steel, R.J., 2011.M Microstructural Analysis of Friction Stir Welded Ferritic Stainless Steel. MaterialsScience and Engineering: A., 528(6), 2889-2894.
  • 22. Nandan, R., DebRoy, T., Bhadeshia, H.K.D.H.,M2008. Recent Advances in Friction-Stir Welding-Process, Weldment Structure and Properties. Progress in Materials Science, 53, 980–1023.
  • 23.Cakır, R., Celik, S., 2018. Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Al 5754-Cu. El-Cezeri Science and Engineering Journal, 4(1) 82–91.
  • 24. Kimapong, K., Watanabe, T., 2004. Friction Stir Welding of Aluminum Alloy to Steel. Welding Journal, 83(10), 277S-282S.
  • 25. Aghaei, A., Dehghani, K., 2015. Characterizations of Friction Stir Welding of Dissimilar Monel400 and Stainless Steel 316. International Journal of Advanced Manufacturing Technology, 77, 573–579.
  • 26.Jafarzadegan, M., Feng, A.H., Abdollah-zadeh, A., Saeid, T., Shen, J., Assadi, H., 2013. Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld Between Austenitic Stainless Steel and Low Carbon Steel. Journal of Materials Science and Technology, 29(4), 367–372.
  • 27. Sharma, G., Dwivedi, D.K., 2017. Study on Microstructure and Mechanical Properties of Dissimilar Steel Joint Developed Using Friction Stir Welding. International Journal of Advanced Manufacturing Technology, 88, 1299–1307.

Investigation of Mechanical Properties and Microstructures of AISI 316 Stainless Steel and Carbon Steel Pairs Combined by Friction Stir Welding

Year 2021, Volume: 36 Issue: 3, 719 - 733, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005507

Abstract

Friction stir welding is a solid state welding technique used to weld similar or dissimilar materials in a solidstate, using the heat generated by the friction of a pin rotating at a certain speed between metals. Welding is done with a non-consumable pin that is harder than the materials to be welded. In this study, AISI 316 austenitic stainless steel and plain carbon steels were joined by friction stir welding. Steel plates joined have a thickness of 3 mm, a width of 60 mm and a length of 120 mm. Tungsten carbide tip with an equilateral triangle profile with a shoulder diameter of 16 mm and a pin length of 2.7 mm was used in the experiments. The friction stir welding was performed at a speed of 710 rpm and a welding speed of 63 mm/min, at an tilt angle of 1.5 ° to the tool. It is aimed to determine the most compatible weld pair by examining the microstructure and mechanical properties of the welded areas. From the results of the mechanical tests and microstructure analysis, it has been revealed that the most compatible welding pair isAISI 316-AISI 1010. In mechanical tests, it was seen that the AISI 316-AISI 1010 steel pair had the best value among other weld pairs with a tensile value of 618,81 MPa. When the microstructures were examined, it was observed that the grain size greatly affected the strength of the material, and the strength of the material decreased, especially where large grains were seen

References

  • 1. Cam, G., Mistikoglu, S., 2014. Recent Developments in Friction Stir Welding of Al-alloys. Journal of Materials Engineering and Performance, 23(6), 1936-1953.
  • 2. Thomas, W.M., Threadgill, P.L., Nicholas, E.D., 1999. Feasibility of Friction Stir Welding Steel. Science and Technology of Welding and Joining, 4(6), 365–372.
  • 3. Mishra, R.S., Ma, Z.Y., 2005. Friction Stir Welding and Processing. Materials Science and Engineering R., 50, 1–78.
  • 4. Meran, C., Canyurt, O.E., 2010. Friction Stir Welding of Austenitic Stainless Steels. The Journal of Achievements in Materials and Manufacturing Engineering, 43(1), 432-439.
  • 5. Jafarzadegan, M., Feng, A.H., Abdollah-zadeh, A., Saeid, T., Shen, J., Assadi, H., 2012. Microstructural Characterization in Dissimilar Friction Stir Welding Between 304 Stainless Steel and st37 Steel. Materials Characterization, 74, 28–41.
  • 6. Aktarer, S.M., Sekban, M., Küçükömeroğlu, T., 2015. IF Çeliği ile AA6061 Alaşımının Sürtünme Karıştırma Kaynak Yöntemiyle Birleştirilebilirliği. Kaynak Kongresi IX. Ulusal Kongre ve Sergisi Bildiriler Kitabı, Ankara, 20-21 Kasım 2015, 435-445.
  • 7. Reynolds, A.P., Tang, W., Gnaupel-Herold, T., Prask, H., 2003. Structure, Properties, and Residual Stress of 304L Stainless Steel Friction Stir Welds. Scripta Materialia, 48, 1289–1294.
  • 8. Bozkurt, Y., Boumerzoug, Z., 2018. Tool Material Effect on the Friction Stir Butt Welding of AA2124-T4 Alloy Matrix MMC. Journal of Materials Research and Technology, 7(1), 29–38.
  • 9. Basak, H., Kayır, Y., Turkyilmaz, E.H., 2018. Experimental Investigation of the Different Stirring Pin Forms Caused Force and its Effects of Joining on Friction Stir Welding. El-Cezeri Science and Engineering Journal, 4(2), 249–257.
  • 10.Ragu Nathan, S., Balasubramanian, V., Malarvizhi, S., Rao, A.G., 2016. Effect of Tool Shoulder Diameter on Stir Zone Characteristics of Friction Stir Welded HSLA Steel Joints. Transactions of the Indian Institute of Metals, 69(10), 1861-1869.
  • 11.Boz, M., Kurt, A., 2004. The Influence of Stirrer Geometry on Bonding and Mechanical Properties in Friction Stir Welding Process. Materials & Design, 25, 343-347.
  • 12. Elengovan, K., Balasubramanian, V., 2008. Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminium Alloy. Materials & Design, 29, 362-373.
  • 13. Sık, A., Erturk, I., Onder, M., 2010. A Studyinto Effects of Different Parameters on Mechanical Properties in Friction Stir Welding of AA 2024 Aluminium Alloy. Pamukkale University Journal of Engineering Sciences, 16(2), 139-147.
  • 14. Hascalık, A., Caydas, U., Unal, E., Karaca, F., 2007. The Effect of tip Geometry on the Friction Stir Selding of AA 5251 Alloy. Electronic Journal of Machine Technologies, 4, 1-7.
  • 15. Fujii, H., Cui, L., Tsuji, N., Maeda, M., Nakata, K., Nogi, K., 2006. Friction Stir Welding of Carbon Steels. Materials Science and Engineering: A., 429, 50-57.
  • 16. Lienert, T.J., Stellwag, W.L., Grimmet, B.B., Warke, R.W., 2003. Friction Stir Welding Studies on Mild Steel Tool Durability and Steel Microstructure. Supplement to the Welding Journal, 1S-9S.
  • 17. Lakshminarayanan, A.K., 2016. Enhancing the Properties of Friction Stir Welded Stainless Steel Joints Via Multi-criteria Optimization. Archives of Civil and Mechanical Engineering, 16(4), 605-617.
  • 18. Park, S.H.C., Sato, Y.S., Kokawa, H., Okamoto, K., Hirano, S., Inagaki, M., 2003. Rapid Formation of the Sigma Phase in 304 Stainless Steel During Friction Stir Welding. Materials Science, 49, 1175-1180.
  • 19. Meran, C., Kovan, M., Alptekin, A., 2007. Friction Stir Welding of AISI 304 Austenitic Stainless Steel. Materials Science and Engineering Technology, 38(10), 829-835.
  • 20.Bilgin, M.B., Meran, C., 2012. The Effect of Tool Rotational and Traverse Speed on Friction Stir Weldability of AISI 430 Ferritic Stainless Steels. Materials & Design, 33, 376-383.
  • 21.Cho, H.H., Han, H.N., Hong, S.T., Park, J.H., Kwon, Y.J., Kim, S.H., Steel, R.J., 2011.M Microstructural Analysis of Friction Stir Welded Ferritic Stainless Steel. MaterialsScience and Engineering: A., 528(6), 2889-2894.
  • 22. Nandan, R., DebRoy, T., Bhadeshia, H.K.D.H.,M2008. Recent Advances in Friction-Stir Welding-Process, Weldment Structure and Properties. Progress in Materials Science, 53, 980–1023.
  • 23.Cakır, R., Celik, S., 2018. Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Al 5754-Cu. El-Cezeri Science and Engineering Journal, 4(1) 82–91.
  • 24. Kimapong, K., Watanabe, T., 2004. Friction Stir Welding of Aluminum Alloy to Steel. Welding Journal, 83(10), 277S-282S.
  • 25. Aghaei, A., Dehghani, K., 2015. Characterizations of Friction Stir Welding of Dissimilar Monel400 and Stainless Steel 316. International Journal of Advanced Manufacturing Technology, 77, 573–579.
  • 26.Jafarzadegan, M., Feng, A.H., Abdollah-zadeh, A., Saeid, T., Shen, J., Assadi, H., 2013. Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld Between Austenitic Stainless Steel and Low Carbon Steel. Journal of Materials Science and Technology, 29(4), 367–372.
  • 27. Sharma, G., Dwivedi, D.K., 2017. Study on Microstructure and Mechanical Properties of Dissimilar Steel Joint Developed Using Friction Stir Welding. International Journal of Advanced Manufacturing Technology, 88, 1299–1307.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yeliz Alnak 0000-0003-4383-3806

Ali Özer This is me 0000-0002-4207-8207

Vedat Savaş This is me 0000-0003-0563-1955

Publication Date September 30, 2021
Published in Issue Year 2021 Volume: 36 Issue: 3

Cite

APA Alnak, Y., Özer, A., & Savaş, V. (2021). Sürtünme Karıştırma Kaynağı ile Birleştirilen AISI 316 Paslanmaz Çelik ve Karbonlu Çelik Çiftlerinin Mekanik Özelliklerinin ve Mikroyapılarının İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 719-733. https://doi.org/10.21605/cukurovaumfd.1005507