Research Article
BibTex RIS Cite

The Investigation of Corrosion Performance and Durability of Hydroxyapatite-Coated Titanium Implants and the Effect of Antibiotic Additives

Year 2021, Volume: 36 Issue: 3, 735 - 742, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005521

Abstract

In this study, amoxicillin and potassium clavulanate were loaded as antibiotic additives to hydroxyapatite coating (L-HAP) and were used to enhance biocompatibility and corrosion resistance of titanium (Ti) in- vitro conditions. Coating was achieved using the Successive Ionic Layer Adsorption and Reaction (SILAR) process. Scanning electron microscopy (SEM) images, energy dispersive X-ray (EDX) analysis, atomic force microscopy (AFM) images, X-ray diffraction (XRD) analysis, and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to determine the surface morphology. The corrosion test was performed using electrochemical impedance spectroscopy (EIS) and polarization curves in artificial saliva at 310 K. Furthermore the quantum chemical parameters of amoxicillin and potassium clavulanate were investigated and associated with the adsorption ability of these molecules. Results revealed that the corrosion performance of Ti was improved by L-HAP, which had a lower anodic current density and better corrosion resistance. This situation dealt with the more durable, compact film that had been produced on the surface.

References

  • 1. Wang F., Yang C., Duan C., Xiao D., Tang Y., Zhu J., 2015. An Organ-like Titanium Carbide Material (MXene) with Multilayer Structure Encapsulating Hemoglobin for a Mediator-free Biosensor. Journal of the Electrochemical Society, 162(1), 16-21.
  • 2. Chen, S., Tsai, W., Chen, P., Fang, A., Say, W., 2016. Influence of Applied Voltages on Mechanical Properties and In-vitro Performances of Electroplated Hydroxyapatite Coatings on Pure Titanium. Journal of The Electrochemical Society, 163(7), 305-308.
  • 3. Mirzaee, M., Vaezi, M., Palizdar, Y., 2016. Synthesis and Characterization of Silver Doped Hydroxyapatite Nanocomposite Coatings and Evaluation of Their Antibacterial and Corrosion Resistance Properties in Simulated Body Fluid. Materials Science and Engineering, 69, 675-684.
  • 4. Coşkun, M., Karahan, I., Golden, T., 2015. Computer Assisted Corrosion Analysis of Hydroxyapatite Coated CoCrMo Biomedical Alloys. Surface&Coatings Technology, 275, 1-9.
  • 5. Wang, H., Lin, C., Hu, R., Xu, Y., 2007. Electrochemical Deposition of Nano-micro Structured Octacalcium Phosphate/protein Composite Coating on Titanium for Biomedical Applications. ECS Transactions, 3(19), 21-26.
  • 6. Shiha, Y., Tsai, M., Ou, K., 2007. Effect of Oxide Film Containing Fluorine Ion on Enhancing the Initial Osseointegration of Titanium-based Alloy. ECS Transactions, 6(15), 21-33.
  • 7. Matykina, E., Monfort, F., Berkani, A., Skeldon, P., Thompson, G., Gough, J., 2007. Characterization of Spark-anodized Titanium for Biomedical Applications. Journal of the Electrochemical Society, 154(6), 279-285.
  • 8. Ouerd, A., Alemany-Dumont, C., Berthomé, G., Normand, B., Szunerits, S., 2007. I. Electrochemical Characterization of the Metal/Protein Interface. Journal of The Electrochemical Society, 154(6), 593-601.
  • 9. Kim, J., Leez, K., 2009. Dependence of the Morphology of Nanostructured Titanium Oxide on Fluoride Ion Content. Electrochemical and Solid-State Letters, 12(3), 10-12.
  • 10. Dunne, C., Levy, G., Hakimi, O., Aghionb, E., Twomey, B., Stanton, K., 2016. Corrosion Behaviour of Biodegradable Magnesium Alloys with Hydroxyapatite Coatings. Surface& Coatings Technology, 289, 37-44.
  • 11. Pina, V., Amigo, V., Munoz, I., 2016. Microstructural, Electrochemical and Tribo-electrochemical Characterisation of Titanium-copper Biomedical Alloys. Corrosion Science, 109, 115-125.
  • 12. Take, S., Kikuchi, K., Suda, S., Izawa, S., Itoi, Y., 2014. Preparation and Evaluation of Zn Doped HAp Plasma Spray Biocombatible Coatings on Titanium. ECS Transactions, 58, 17-22.
  • 13. Dehestani, M., Adolfsson, E., Stanciu, L., 2016. Mechanical Properties and Corrosion Behavior of Powder Metallurgy Iron-hydroxyapatite Composites for Biodegradable Implant Applications. Materials and Design, 109, 556-569.
  • 14. Anjaneyulu, U., Vijayalakshmi, U., 2017. Preparation and Characterization of Novel Sol-gel Derived Hydroxyapatite/Fe3O4 Composites Coatings on Ti-6Al-4V for Biomedical Applications. Materials Letters, 189, 118-121.
  • 15. Akazem, F., Kiss, A., Birlik, I, Braic, V., Luculescu, C., Vladescu, A., 2014. The Corrosion and Bioactivity Behavior of SiC Doped Hydroxyapatite for Dental Applications. Ceramics International, 40, 15881-15887.
  • 16. Otsuka, Y., Kojima, D., Mutoh, Y., 2016. Prediction of Cyclic Delamination Lives of Plasma-sprayed Hydroxyapatite Coating on Ti–6Al–4V Substrates with Considering Wear and Dissolutions. Journal of the Mechanical Behavior of Biomedical Materials, 64, 113-124.
  • 17.Jankovic, A., Eraković, S., Mitrić, M., Matić, I.Z., Juranić, Z.D., Tsui, G.C.P., Tang, C.Y., Mišković-Stanković, M., Rhee, K.Y., Park, S.J., 2015. Bioactive Hydroxyapatite/graphene Composite Coating and its Corrosion Stability in Simulated Body Fluid. Journal of Alloys and Compounds, 624,148-157.
  • 18. Gopi, D., Shinyjoy, E., Sekar, M., Surendiran, M., Kavitha, L., Sampath Kumar, T., 2013. Development of Carbon Nanotubes Reinforced Hydroxyapatite Composite Coatings on Titanium by Electrodeposition Method. Corrosion Science, 73, 321-330.
  • 19. Usinskas, P., Stankeviciute, Z., Beganskiene, A., Kareiva, A., 2016. Sol-gel Derived Porous and Hydrophilic Calcium Hydroxyapatite Coating on Modified Titanium Substrate. Surface Coatings Technology, 307, 935-940.
  • 20. Palanivelu, R., Kumar, A., 2014. Scratch and Wear Behaviour of Plasma Sprayed Nano Ceramics Bilayer Al2O3-13 wt% TiO2/hydroxyapatite Coated on Medical Grade Titanium Substrates in SBF Environment. Applied Surface Science, 315, 372-379.
  • 21. Huang, Y., Ding, Q., Panga, X., Han, S., Yan, Y., 2013. Corrosion Behavior and Biocompatibility of Strontium and Flüorine Co-doped Electrodeposited Hydroxyapatite Coatings. Applied Surface Science, 282, 456-462.
  • 22. Asri, R.I.M., Harun, W.S.W., Hassan, M.A., Ghani, S.A.C., Buyongc, Z., 2016. A Review of Hydroxyapatite-based Coating Techniques: Sol–gel and Electrochemical Depositions on Biocompatible Metals. Journal of the Mechanical Behavior of Biomedical Materials, 57, 95-108.
  • 23. Metikos-Hukovic, M., Tkalcec, E., Kwokala, I., Piljac, J., 2003. An in Vitro Study of Ti and Ti-Alloys Coated with Sol–gel Derived Hydroxyapatite Coatings. Surface Coatings Technology, 165, 40-50.
  • 24. Suchanek, K., Hajdya, M., Maximenko, A., Zarzycki, A., Marszaek, M., Jany, B.R., Krok, F., 2017. The Influence of Nanoporous Anodic Titanium Oxide Substrates on the Growth of the Crystalline Hydroxyapatite Coatings. Materials Chemistry Physics, 186, 167-178.
  • 25. Gopi, D., Shinyjoya, E., Kavithac, L., 2015. Influence of Ioni Csubstitution in Improving the Biological Property of Carbon Nanotubes Reinforced Hydroxyapatite Composite Coating on Titanium for Orthopedic Applications. Ceram. Int. 41, 5454-5463.
  • 26. Yan, Y., Zhang, X., Mao, H., Huang, Y., Ding, Q., Pang, X., 2015. Hydroxyapatite/gelatin Functionalized Graphene Oxide Composite Coatings Deposited on TiO2 Nanotube by Electrochemical Deposition for Biomedical Applications. Applied Surface Science, 329, 76-82.
  • 27. Mohan, L., Durgalakshmi, D., Geeth, M., Sankara Narayanan, T.S.N., Asokamani, R., 2012. Electrophoretic Deposition of Nanocomposite (HAp+TiO2) on Titanium Alloy for Biomedical Applications. Ceram. Int., 41(38), 3435-3443.
  • 28. Gopi, D., Karthika, A., Rajeswari, D., Kavitha, L., Pramodd, R., Dwivedid, J., 2014. Evaluation of the Mechanical and Corrosion Protection Performance of Electrodeposited Hydroxyapatite on the High Energy Electron Beam Treated Titanium Alloy. Journal of Alloys and Compounds, 616, 498-504.
  • 29. Rafieerad, A., Ashra, M.R., Mahmoodian, R., Bushroa, A.R., 2015. Surface Characterization and Corrosion Behavior of Calcium Phosphate-base Composite Layer on Titanium and its Alloys Via Plasma Electrolytic Oxidation: A Review Paper. Material Science Enineering, 57, 397-413.
  • 30. Ripamonti, U., Roden, L.C., Renton, L.F., 2012. Osteoinductive Hydroxyapatite-coated Titanium Implants. Biomaterials, 33, 3818-3823.
  • 31. Indira, K., Mudali, U.K., Rajendran, N., 2014. In Vitro Bioactivity and Corrosion Resistance of Zr Incorporated TiO2 Nanotube Arrays for Orthopaedic Applications. Applied Surface Science, 316, 264-275.
  • 32. Roh, H.S., Jung, S.C., Kook, M.S., Kim, B.H., 2016. In Vitro Study of 3D PLGA/n-HAp/ß-TCP Composite Scaffolds Withetched Oxygen Plasma Surface Modification in Bone Tissue Engineering. Applied Surface Science, 388, 321-330.
  • 33. Kalsoom, U., Bashir, S., Ali, N., 2013. SEM, AFM, EDX and XRD Analysis of Laser Ablated Ti in Nonreactive and Reactive Ambient Environments. Surface Coatings Technology, 235, 297-302.
  • 34. Romaraj, R., Taryba, M.G., Morozov, Y., 2021. On the Synergistic Corrosion Inhibition and Polymer Healing Effects of Polyolefin Coatings Modified with Ce-loaded Hydroxyapatite Particles Applied on Steel. Electrochimica Acta, 388, 138648-138660.
  • 35. Srikant, T., Mishra, S.B., 2021. Post Annealing Effect on Corrosion Behavior, Bacterial Adhesion, and Bioactivity of LVOF Sprayed Hydroxyapatite Coating. Surface&Coatings Technology, 405, 126500-126515.
  • 36.Jing, Z., Qianqian, C., Hu, J., 2021. Corrosion, Wear and Biocompatibility of Hydroxyapatite Bio-functionally Graded Coating on Titanium Alloy Surface Prepared by Laser Cladding. Ceramics International, 47, 24641–24651.
  • 37. Siveraj, D., Kalimuthu, V., Arumugam, G., 2020. Tailoring Cu Substituted Hydroxyapatite/functionalized Multiwalled Carbon Nanotube Composite Coating on 316L SS Implant for Enhanced Corrosion Resistance, Antibacterial and Bioactive Properties. International Journal of Pharmaceutics, 590, 119946-119958.
  • 38. Wen, S., Xianglei, L., Jiahui, D., Yulai, L., Ziting, L., Zimeng, Z., Guangmeng, C., 2021. Hydrothermal Synthesis of Hydroxyapatite Coating on the Surface of Medical Magnesium Alloy and its Corrosion Resistance. Progress in Natural Science: Materials International, 31, 324–333.
  • 39. Shanaghia, A., Mehrjoub, Z., Ahmadiana, A.R., Souria, P., Chub, K., 2021. Enhancedm Corrosion Resistance, Antibacterial Properties, and Biocompatibility by Hierarchical Hydroxyapatite/ciprofloxacin-calcium Phosphate Coating on Nitrided NiTi Alloy. Materials Science&Engineering, 118, 111524- 111540.
  • 40. Senthilkumar, G., Saravanan, K.G., Vignesh, P., Sudharshan Vishwak, R., Nivin Joy, T., Hemanandh, J., 2021. Hydroxyapatite–barium/strontium Titanate Composite Coatings for Better Mechanical, Corrosion and Biological Performance. Materials Today: Proceedings, 44, 3618–3621.
  • 41. Radha, R., Sreekanth, D., 2020. Electroless Thin Coated Hydroxyapatite Reinforced Mg-Sn Alloy Composite for Enhanced Bio Corrosion Resistance and Bioactivity. Comp. Communications, 21, 100372-100379

Hidroksiapatit Kaplı Titanyum İmplantların Korozyon Performansı ve Dayanıklılığının ve Antibiyotik Katkı Maddelerinin Etkisinin Araştırılması

Year 2021, Volume: 36 Issue: 3, 735 - 742, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005521

Abstract

Bu çalışmada, hidroksiapatit kaplamaya (L-HAP) antibiyotik katkı maddesi olarak ilave edilen amoksisilin ve potasyum klavulanat, in-vitro koşullarda titanyumun (Ti) biyouyumluluğunu ve korozyon direncini arttırmak için kullanılmıştır. Kaplama, Ardışık İyonik Katman Adsorpsiyon ve Reaksiyon (SILAR) yöntemi ile gerçekleştirildi. Yüzey morfolojisi, taramalı elektron mikroskobu (SEM), atomik kuvvet mikroskobu (AFM), enerji dağıtıcı X-ışını (EDX) analizi, X-ışını kırınımı (XRD) analizi, azaltılmış toplam yansıma-Fourier dönüşümlü kızılötesi spektroskopisi (ATR- FTIR) ile belirlendi. Korozyon testleri, elektrokimyasal impedans spektroskopisi (EIS) ve polarizasyon eğrileri yardımıyla 310 K'de yapay tükürük çözeltisinde elde edildi. Ayrıca amoksisilin ve potasyum klavulanatın kuantum kimyasal parametreleri araştırıldı ve bu moleküllerin adsorpsiyon yeteneği ile ilişkilendirildi. Sonuçlar, Ti'nin korozyon performansının, daha düşük anodik akım yoğunluğuna ve daha iyi korozyon direncine sahip olan L-HAP ile iyileştirildiğini ortaya koydu. Bu durum, yüzeyde üretilen daha dayanıklı, kompakt film ile ilişkilendirildi.

References

  • 1. Wang F., Yang C., Duan C., Xiao D., Tang Y., Zhu J., 2015. An Organ-like Titanium Carbide Material (MXene) with Multilayer Structure Encapsulating Hemoglobin for a Mediator-free Biosensor. Journal of the Electrochemical Society, 162(1), 16-21.
  • 2. Chen, S., Tsai, W., Chen, P., Fang, A., Say, W., 2016. Influence of Applied Voltages on Mechanical Properties and In-vitro Performances of Electroplated Hydroxyapatite Coatings on Pure Titanium. Journal of The Electrochemical Society, 163(7), 305-308.
  • 3. Mirzaee, M., Vaezi, M., Palizdar, Y., 2016. Synthesis and Characterization of Silver Doped Hydroxyapatite Nanocomposite Coatings and Evaluation of Their Antibacterial and Corrosion Resistance Properties in Simulated Body Fluid. Materials Science and Engineering, 69, 675-684.
  • 4. Coşkun, M., Karahan, I., Golden, T., 2015. Computer Assisted Corrosion Analysis of Hydroxyapatite Coated CoCrMo Biomedical Alloys. Surface&Coatings Technology, 275, 1-9.
  • 5. Wang, H., Lin, C., Hu, R., Xu, Y., 2007. Electrochemical Deposition of Nano-micro Structured Octacalcium Phosphate/protein Composite Coating on Titanium for Biomedical Applications. ECS Transactions, 3(19), 21-26.
  • 6. Shiha, Y., Tsai, M., Ou, K., 2007. Effect of Oxide Film Containing Fluorine Ion on Enhancing the Initial Osseointegration of Titanium-based Alloy. ECS Transactions, 6(15), 21-33.
  • 7. Matykina, E., Monfort, F., Berkani, A., Skeldon, P., Thompson, G., Gough, J., 2007. Characterization of Spark-anodized Titanium for Biomedical Applications. Journal of the Electrochemical Society, 154(6), 279-285.
  • 8. Ouerd, A., Alemany-Dumont, C., Berthomé, G., Normand, B., Szunerits, S., 2007. I. Electrochemical Characterization of the Metal/Protein Interface. Journal of The Electrochemical Society, 154(6), 593-601.
  • 9. Kim, J., Leez, K., 2009. Dependence of the Morphology of Nanostructured Titanium Oxide on Fluoride Ion Content. Electrochemical and Solid-State Letters, 12(3), 10-12.
  • 10. Dunne, C., Levy, G., Hakimi, O., Aghionb, E., Twomey, B., Stanton, K., 2016. Corrosion Behaviour of Biodegradable Magnesium Alloys with Hydroxyapatite Coatings. Surface& Coatings Technology, 289, 37-44.
  • 11. Pina, V., Amigo, V., Munoz, I., 2016. Microstructural, Electrochemical and Tribo-electrochemical Characterisation of Titanium-copper Biomedical Alloys. Corrosion Science, 109, 115-125.
  • 12. Take, S., Kikuchi, K., Suda, S., Izawa, S., Itoi, Y., 2014. Preparation and Evaluation of Zn Doped HAp Plasma Spray Biocombatible Coatings on Titanium. ECS Transactions, 58, 17-22.
  • 13. Dehestani, M., Adolfsson, E., Stanciu, L., 2016. Mechanical Properties and Corrosion Behavior of Powder Metallurgy Iron-hydroxyapatite Composites for Biodegradable Implant Applications. Materials and Design, 109, 556-569.
  • 14. Anjaneyulu, U., Vijayalakshmi, U., 2017. Preparation and Characterization of Novel Sol-gel Derived Hydroxyapatite/Fe3O4 Composites Coatings on Ti-6Al-4V for Biomedical Applications. Materials Letters, 189, 118-121.
  • 15. Akazem, F., Kiss, A., Birlik, I, Braic, V., Luculescu, C., Vladescu, A., 2014. The Corrosion and Bioactivity Behavior of SiC Doped Hydroxyapatite for Dental Applications. Ceramics International, 40, 15881-15887.
  • 16. Otsuka, Y., Kojima, D., Mutoh, Y., 2016. Prediction of Cyclic Delamination Lives of Plasma-sprayed Hydroxyapatite Coating on Ti–6Al–4V Substrates with Considering Wear and Dissolutions. Journal of the Mechanical Behavior of Biomedical Materials, 64, 113-124.
  • 17.Jankovic, A., Eraković, S., Mitrić, M., Matić, I.Z., Juranić, Z.D., Tsui, G.C.P., Tang, C.Y., Mišković-Stanković, M., Rhee, K.Y., Park, S.J., 2015. Bioactive Hydroxyapatite/graphene Composite Coating and its Corrosion Stability in Simulated Body Fluid. Journal of Alloys and Compounds, 624,148-157.
  • 18. Gopi, D., Shinyjoy, E., Sekar, M., Surendiran, M., Kavitha, L., Sampath Kumar, T., 2013. Development of Carbon Nanotubes Reinforced Hydroxyapatite Composite Coatings on Titanium by Electrodeposition Method. Corrosion Science, 73, 321-330.
  • 19. Usinskas, P., Stankeviciute, Z., Beganskiene, A., Kareiva, A., 2016. Sol-gel Derived Porous and Hydrophilic Calcium Hydroxyapatite Coating on Modified Titanium Substrate. Surface Coatings Technology, 307, 935-940.
  • 20. Palanivelu, R., Kumar, A., 2014. Scratch and Wear Behaviour of Plasma Sprayed Nano Ceramics Bilayer Al2O3-13 wt% TiO2/hydroxyapatite Coated on Medical Grade Titanium Substrates in SBF Environment. Applied Surface Science, 315, 372-379.
  • 21. Huang, Y., Ding, Q., Panga, X., Han, S., Yan, Y., 2013. Corrosion Behavior and Biocompatibility of Strontium and Flüorine Co-doped Electrodeposited Hydroxyapatite Coatings. Applied Surface Science, 282, 456-462.
  • 22. Asri, R.I.M., Harun, W.S.W., Hassan, M.A., Ghani, S.A.C., Buyongc, Z., 2016. A Review of Hydroxyapatite-based Coating Techniques: Sol–gel and Electrochemical Depositions on Biocompatible Metals. Journal of the Mechanical Behavior of Biomedical Materials, 57, 95-108.
  • 23. Metikos-Hukovic, M., Tkalcec, E., Kwokala, I., Piljac, J., 2003. An in Vitro Study of Ti and Ti-Alloys Coated with Sol–gel Derived Hydroxyapatite Coatings. Surface Coatings Technology, 165, 40-50.
  • 24. Suchanek, K., Hajdya, M., Maximenko, A., Zarzycki, A., Marszaek, M., Jany, B.R., Krok, F., 2017. The Influence of Nanoporous Anodic Titanium Oxide Substrates on the Growth of the Crystalline Hydroxyapatite Coatings. Materials Chemistry Physics, 186, 167-178.
  • 25. Gopi, D., Shinyjoya, E., Kavithac, L., 2015. Influence of Ioni Csubstitution in Improving the Biological Property of Carbon Nanotubes Reinforced Hydroxyapatite Composite Coating on Titanium for Orthopedic Applications. Ceram. Int. 41, 5454-5463.
  • 26. Yan, Y., Zhang, X., Mao, H., Huang, Y., Ding, Q., Pang, X., 2015. Hydroxyapatite/gelatin Functionalized Graphene Oxide Composite Coatings Deposited on TiO2 Nanotube by Electrochemical Deposition for Biomedical Applications. Applied Surface Science, 329, 76-82.
  • 27. Mohan, L., Durgalakshmi, D., Geeth, M., Sankara Narayanan, T.S.N., Asokamani, R., 2012. Electrophoretic Deposition of Nanocomposite (HAp+TiO2) on Titanium Alloy for Biomedical Applications. Ceram. Int., 41(38), 3435-3443.
  • 28. Gopi, D., Karthika, A., Rajeswari, D., Kavitha, L., Pramodd, R., Dwivedid, J., 2014. Evaluation of the Mechanical and Corrosion Protection Performance of Electrodeposited Hydroxyapatite on the High Energy Electron Beam Treated Titanium Alloy. Journal of Alloys and Compounds, 616, 498-504.
  • 29. Rafieerad, A., Ashra, M.R., Mahmoodian, R., Bushroa, A.R., 2015. Surface Characterization and Corrosion Behavior of Calcium Phosphate-base Composite Layer on Titanium and its Alloys Via Plasma Electrolytic Oxidation: A Review Paper. Material Science Enineering, 57, 397-413.
  • 30. Ripamonti, U., Roden, L.C., Renton, L.F., 2012. Osteoinductive Hydroxyapatite-coated Titanium Implants. Biomaterials, 33, 3818-3823.
  • 31. Indira, K., Mudali, U.K., Rajendran, N., 2014. In Vitro Bioactivity and Corrosion Resistance of Zr Incorporated TiO2 Nanotube Arrays for Orthopaedic Applications. Applied Surface Science, 316, 264-275.
  • 32. Roh, H.S., Jung, S.C., Kook, M.S., Kim, B.H., 2016. In Vitro Study of 3D PLGA/n-HAp/ß-TCP Composite Scaffolds Withetched Oxygen Plasma Surface Modification in Bone Tissue Engineering. Applied Surface Science, 388, 321-330.
  • 33. Kalsoom, U., Bashir, S., Ali, N., 2013. SEM, AFM, EDX and XRD Analysis of Laser Ablated Ti in Nonreactive and Reactive Ambient Environments. Surface Coatings Technology, 235, 297-302.
  • 34. Romaraj, R., Taryba, M.G., Morozov, Y., 2021. On the Synergistic Corrosion Inhibition and Polymer Healing Effects of Polyolefin Coatings Modified with Ce-loaded Hydroxyapatite Particles Applied on Steel. Electrochimica Acta, 388, 138648-138660.
  • 35. Srikant, T., Mishra, S.B., 2021. Post Annealing Effect on Corrosion Behavior, Bacterial Adhesion, and Bioactivity of LVOF Sprayed Hydroxyapatite Coating. Surface&Coatings Technology, 405, 126500-126515.
  • 36.Jing, Z., Qianqian, C., Hu, J., 2021. Corrosion, Wear and Biocompatibility of Hydroxyapatite Bio-functionally Graded Coating on Titanium Alloy Surface Prepared by Laser Cladding. Ceramics International, 47, 24641–24651.
  • 37. Siveraj, D., Kalimuthu, V., Arumugam, G., 2020. Tailoring Cu Substituted Hydroxyapatite/functionalized Multiwalled Carbon Nanotube Composite Coating on 316L SS Implant for Enhanced Corrosion Resistance, Antibacterial and Bioactive Properties. International Journal of Pharmaceutics, 590, 119946-119958.
  • 38. Wen, S., Xianglei, L., Jiahui, D., Yulai, L., Ziting, L., Zimeng, Z., Guangmeng, C., 2021. Hydrothermal Synthesis of Hydroxyapatite Coating on the Surface of Medical Magnesium Alloy and its Corrosion Resistance. Progress in Natural Science: Materials International, 31, 324–333.
  • 39. Shanaghia, A., Mehrjoub, Z., Ahmadiana, A.R., Souria, P., Chub, K., 2021. Enhancedm Corrosion Resistance, Antibacterial Properties, and Biocompatibility by Hierarchical Hydroxyapatite/ciprofloxacin-calcium Phosphate Coating on Nitrided NiTi Alloy. Materials Science&Engineering, 118, 111524- 111540.
  • 40. Senthilkumar, G., Saravanan, K.G., Vignesh, P., Sudharshan Vishwak, R., Nivin Joy, T., Hemanandh, J., 2021. Hydroxyapatite–barium/strontium Titanate Composite Coatings for Better Mechanical, Corrosion and Biological Performance. Materials Today: Proceedings, 44, 3618–3621.
  • 41. Radha, R., Sreekanth, D., 2020. Electroless Thin Coated Hydroxyapatite Reinforced Mg-Sn Alloy Composite for Enhanced Bio Corrosion Resistance and Bioactivity. Comp. Communications, 21, 100372-100379
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Demet Yazıcı This is me 0000-0002-5726-1987

Nilgün Alpay 0000-0003-3210-6320

Başak Doğru Mert This is me 0000-0002-2270-9032

Publication Date September 30, 2021
Published in Issue Year 2021 Volume: 36 Issue: 3

Cite

APA Yazıcı, D., Alpay, N., & Doğru Mert, B. (2021). The Investigation of Corrosion Performance and Durability of Hydroxyapatite-Coated Titanium Implants and the Effect of Antibiotic Additives. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 735-742. https://doi.org/10.21605/cukurovaumfd.1005521