Research Article
BibTex RIS Cite

Analysis of a New Interleaved-Based Multi-Port Isolated DC-DC Converter for Photovoltaic Panel and Battery Integrated Systems

Year 2021, Volume: 36 Issue: 3, 743 - 754, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005543

Abstract

In this study, a new interleaved-based bidirectional isolated multi-port DC-DC converter with an effective control structure for photovoltaic (PV) panel powered and battery buffered systems is proposed. The proposed converter is designed to perform the optimum power flow between generation/storage/load units. In the designed system, the power transfer between the PV panel and the battery is provided by the control of the left leg switches of the interleaved DC-DC converter, while the power transfer between the energy generation/storage units and the loads is provided by the control of the right leg switches of the relevant circuit. With two half-bridge circuits on the secondary side of the high-frequency transformer (HFT), which provides load side isolation, two ports with different voltage levels and which can be controlled independently of each other are formed. In the proposed converter, the power flow between the ports is handled by a multi-loop control scheme that is able to smoothly switch between control loops. Simulation studies have been conducted in the PSIM program to verify the viability and effectiveness of the proposed multiport converter. The performance of the proposed converter is analyzed under dynamic conditions such as different radiation and loading conditions. The power flow capabilities and high efficiency values (>98%) validates the viability and effectiveness of the proposed converter

References

  • 1. Savrun, M.M., 2021. Z-source Converter Integrated dc Electric Spring for Power Quality Improvement in dc Microgris. Engineering Science and Technology, an International Journal, in press, doi: 10.1016/j.jestch. 2021.05.004.
  • 2. Savrun, M.M., Atay, A., 2021. High Voltage Gain Multi-port Bidirectional DC-DC Converter with an Effective Multi-loop Control Strategy for PV/Battery Integrated Systems. European Mechanical Science, 5(3), 99-104.
  • 3. Singh, R.K., Mishra, S., 2013. A Magnetically Coupled Feedback-clamped Optimal Bidirectional Battery Charger. IEEE Trans. Ind. Electron., 60(2), 422-432.
  • 4. Das, M., Agarwal, V., 2016. Design and Analysis of a High-efficiency DC-DC Converter with Soft Switching Capability for Renewable Energy Applications Requiring High Voltage Gain. IEEE Trans. Ind. Electron., 63(5), 2936-2944.
  • 5. Alhatlani, A., Batarseh, I., 2019. Review of Partially Isolated Three-port Converters for PV-Battery Systems That Interface a PV, Bidirectional Battery, and Load. IEEE Conf. Power Electron. Renew. Energy, CPERE 2019, 465–472.
  • 6. Bhattacharjee, A.K., Kutkut, N., Batarseh, I., 2018. Review of Multiport Converters for Solar and Energy Storage Integration. IEEE Trans. Power Electron., 34(2), 1431-1445.
  • 7. Moradisizkoohi, H., Elsayad, N., Mohammed, O.A., 2019. A Family of Three-port Three-level Converter Based on Asymmetrical Bidirectional Half-bridge Topology for Fuel Cell Electric Vehicle Applications. IEEE Trans. Power Electron., 34(12), 11706-11724.
  • 8. Zhang, N., Sutanto, D., Muttaqi, K.M., 2016. A Review of Topologies of Three-port DC-DC Converters for the Integration of Renewable Energy and Energy Storage System. Renew. Sustain. Energy Rev., 56, 388-401.
  • 9. Jyotheeswara Reddy, K., Natarajan, S., 2018. Energy Sources and Multi-input DC-DC Converters Used in Hybrid Electric Vehicle Applications-A Review. Int. J. Hydrogen Energy, 43(36), 17387-17408.
  • 10. Sato, Y., Uno, M., Nagata, H., 2020. Nonisolated Multiport Converters Based on Integration of PWM Converter and Phase-shift-switched Capacitor Converter. IEEE Trans. Power Electron., 35(1), 455-470.
  • 11. Ganjavi, A., Ghoreishy H., Ahmad, A.A., 2018. A Novel Single-ınput Dual-output Three-level. IEEE Transactions on Industrial Electronics, 65(10), 8101-8111.
  • 12. Faraji, R., 2018. Soft-switched Nonisolated High Step-up Three-port. IEEE Trans. Power Electron., 33(12), 10101-10111.
  • 13. Gan, C., Jin, N., Sun, Q., Kong, W., Hu, Y., Tolbert, L.M., 2018. Multiport Bidirectional SRM Drives for Solar-assisted Hybrid Electric Bus Powertrain with Flexible Driving and Self-charging Functions. IEEE Trans. Power Electron., 33(10), 8231-8245.
  • 14. Xue, F., Yu, R., Huang, A.Q., 2017. A 98.3% Efficient GaN Isolated Bidirectional DC-DC Converter for DC Microgrid Energy Storage System Applications. IEEE Transactions on Industrial Electronics, 64(11), 9094-9103.
  • 15. Ding, Z., Yang, C., Zhang, Z., Wang, C., Xie, S., 2014. A Novel Soft-switching Multiport Bidirectional DC-DC Converter for Hybrid Energy Storage System. IEEE Trans. Power Electron., 29(4), 1595-1609.
  • 16. Liu, D., Li, H., 2006. A ZVS Bi-directional DC-DC Converter for Multiple Energy Storage Elements. IEEE Trans. Power Electron, 21(5), 1513-1517.
  • 17. Sathyan, S., Suryawanshi, H.M., Shitole, A.B., Ballal, M.S., Borghate, V.B., 2018. Soft-switched Interleaved DC/DC Converter as Front-end of Multi-inverter Structure for Micro Grid Applications. IEEE Trans. Power Electron., 33(9), 7645-7655.
  • 18. Falcones, S., Ayyanar, R., Mao, X., 2013. A DC-DC Multiport-converter-based Solid-state. IEEE Transactions on Power Electronics, 28(5), 2192-2203.
  • 19. Tao, H., Kotsopoulos, A., Duarte, J.L., Hendrix, M.A.M., 2008. Transformer-coupled Multiport ZVS Bidirectional DC-DC Converter with Wide Input Range. IEEE Trans. Power Electron., 23(2), 771-781.
  • 20. Karthikeyan, V., Gupta, R., 2018. Multiple-input Configuration of Isolated Bidirectional DC-DC Converter for Power Flow Control in Combinational Battery Storage. IEEE Trans. Ind. Informatics, 14(1), 2-11.
  • 21. Zhang, Z., Thomsen, O.C., Andersen, M.A.E., Nielsen, H.R., 2012. Dual-input Isolated Full-bridge Boost DC-DC Converter Based on the Distributed Transformers. IET Power Electron., 5(7), 1074-1083.
  • 22. Tao, H., Duarte, J.L., Hendrix, M.A.M., 2008. Three-port Triple-half-bridge Bidirectional Converter with Zero-voltage Switching. IEEE Trans. Power Electron., 23(2), 782-792.
  • 23. Dusmez, S., Li, X., Akin, B., 2016. A New Multiinput Three-level DC/DC Converter. IEEE Trans. Power Electron., 31(2), 1230-1240.
  • 24. Zeng, J., Qiao, W., Qu, L., 2015. An Isolated Three-port Bidirectional DC-DC Converter for Photovoltaic Systems with Energy Storage. IEEE Trans. Ind. Appl., 51(4), 3493-3503.
  • 25. Jianwu, Z., Wei, Q., Liyan, Q., Jiao, Y., 2014. An Isolated Multiport DC-DC Converter for Simultaneous Power Management of Multiple Different Renewable Energy Sources. IEEE J. Emerg. Sel. Top. Power Electron., 2(1), 70-78.
  • 26. Savrun, M.M., Atay, A., 2020. Multiport Bidirectional DC-DC Converter for PV Powered Electric Vehicle Equipped with Battery and Supercapacitor. IET Power Electron., 13(17), 3931-3939.
  • 27. Hong, J., Yin, J., Liu, Y., Peng, J., Jiang, H., 2019. Energy Management and Control Strategy of Photovoltaic/Battery Hybrid Distributed Power Generation Systems with an Integrated Three-Port Power Converter. IEEE Access, 7, 82838-82847.
  • 28. Wu, H., Jia, Y., Yang, F., Zhu, L., Xing, Y., 2020. Two-stage Isolated Bidirectional DC-AC Converters with Three-port Converters and Two DC Buses. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(4), 4428-4439.
  • 29. Wu, H., Zhang, J., Qin, X., Mu, T., Xing, Y., 2016. Secondary-side-regulated Soft-Switching Full-Bridge Three-port Converter Based on Bridgeless Boost Rectifier and Bidirectional Converter for Multiple Energy Interface. IEEE Transactions on Power Electronics, 31, 4847-4860.
  • 30. Ding, Z., Yang, C., Zhang, Z., Wang, C., Xie, S., 2014. A Novel Soft-switching Multiport Bidirectional DC–DC Converter for Hybrid Energy Storage System. IEEE Transactions on Power Electronics, 29, 1595-1609.
  • 31. Wu, F., Wang, K., Luo, S., 2021. Hybrid-three level Current-fed series-resonant Isolated DC-DC Converter and its Optimization Modulation Strategy. IEEE Transactions on Power Electronics, in press doi: 10.1109/TPEL.2021.3098452

Fotovoltaik Panel ve Batarya Entegre Sistemler için Yeni Bir Interleaved Tabanlı Çok Portlu İzole DA-DA Dönüştürücü Analizi

Year 2021, Volume: 36 Issue: 3, 743 - 754, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005543

Abstract

Bu çalışmada, fotovoltaik (FV) panel ile çalışan ve batarya destekli sistemler için etkin bir kontrol yapısına sahip interleaved tabanlı çift yönlü çok portlu izole yeni bir DA-DA dönüştürücü önerilmektedir. Önerilen dönüştürücü, üretim/depolama/yük birimleri arasındaki optimum güç akışını denetlemek için tasarlanmıştır. Tasarlanan sistemde, FV panel ve batarya arası güç transferi interleaved DA-DA dönüştürücünün sol kol anahtarlarının kontrolü ile sağlanırken, enerji üretim/depolama birimleri ile yükler arası güç transferi ilgili devrenin sağ kol anahtarlarının kontrolü ile sağlanmaktadır. Yük tarafının izolasyonunu sağlayan yüksek frekans transformatörünün (YFT) ikincil tarafında bulunan iki yarım köprü devresi ile birbirinden bağımsız kontrol edilebilen ve farklı gerilim seviyelerine sahip iki port oluşturulmaktadır. Önerilen dönüştürücüde portlar arasındaki güç akışı kontrol döngüleri arasında yumuşak geçiş yapabilen çok döngülü bir kontrol şeması tarafından gerçekleştirilmektedir. Önerilen çok portlu dönüştürücünün uygulanabilirliğini ve etkinliğini doğrulamak için, PSIM programında simülasyon çalışmaları gerçekleştirilmiştir. Önerilen dönüştürücünün performansı farklı ışınım ve yüklenme durumları gibi dinamik koşullar altında analiz edilmiştir. Güç akış yetenekleri ve yüksek verimlilik değerleri (>%98) önerilen dönüştürücünün uygulanabilirliğini ve etkinliğini doğrulamaktadır

References

  • 1. Savrun, M.M., 2021. Z-source Converter Integrated dc Electric Spring for Power Quality Improvement in dc Microgris. Engineering Science and Technology, an International Journal, in press, doi: 10.1016/j.jestch. 2021.05.004.
  • 2. Savrun, M.M., Atay, A., 2021. High Voltage Gain Multi-port Bidirectional DC-DC Converter with an Effective Multi-loop Control Strategy for PV/Battery Integrated Systems. European Mechanical Science, 5(3), 99-104.
  • 3. Singh, R.K., Mishra, S., 2013. A Magnetically Coupled Feedback-clamped Optimal Bidirectional Battery Charger. IEEE Trans. Ind. Electron., 60(2), 422-432.
  • 4. Das, M., Agarwal, V., 2016. Design and Analysis of a High-efficiency DC-DC Converter with Soft Switching Capability for Renewable Energy Applications Requiring High Voltage Gain. IEEE Trans. Ind. Electron., 63(5), 2936-2944.
  • 5. Alhatlani, A., Batarseh, I., 2019. Review of Partially Isolated Three-port Converters for PV-Battery Systems That Interface a PV, Bidirectional Battery, and Load. IEEE Conf. Power Electron. Renew. Energy, CPERE 2019, 465–472.
  • 6. Bhattacharjee, A.K., Kutkut, N., Batarseh, I., 2018. Review of Multiport Converters for Solar and Energy Storage Integration. IEEE Trans. Power Electron., 34(2), 1431-1445.
  • 7. Moradisizkoohi, H., Elsayad, N., Mohammed, O.A., 2019. A Family of Three-port Three-level Converter Based on Asymmetrical Bidirectional Half-bridge Topology for Fuel Cell Electric Vehicle Applications. IEEE Trans. Power Electron., 34(12), 11706-11724.
  • 8. Zhang, N., Sutanto, D., Muttaqi, K.M., 2016. A Review of Topologies of Three-port DC-DC Converters for the Integration of Renewable Energy and Energy Storage System. Renew. Sustain. Energy Rev., 56, 388-401.
  • 9. Jyotheeswara Reddy, K., Natarajan, S., 2018. Energy Sources and Multi-input DC-DC Converters Used in Hybrid Electric Vehicle Applications-A Review. Int. J. Hydrogen Energy, 43(36), 17387-17408.
  • 10. Sato, Y., Uno, M., Nagata, H., 2020. Nonisolated Multiport Converters Based on Integration of PWM Converter and Phase-shift-switched Capacitor Converter. IEEE Trans. Power Electron., 35(1), 455-470.
  • 11. Ganjavi, A., Ghoreishy H., Ahmad, A.A., 2018. A Novel Single-ınput Dual-output Three-level. IEEE Transactions on Industrial Electronics, 65(10), 8101-8111.
  • 12. Faraji, R., 2018. Soft-switched Nonisolated High Step-up Three-port. IEEE Trans. Power Electron., 33(12), 10101-10111.
  • 13. Gan, C., Jin, N., Sun, Q., Kong, W., Hu, Y., Tolbert, L.M., 2018. Multiport Bidirectional SRM Drives for Solar-assisted Hybrid Electric Bus Powertrain with Flexible Driving and Self-charging Functions. IEEE Trans. Power Electron., 33(10), 8231-8245.
  • 14. Xue, F., Yu, R., Huang, A.Q., 2017. A 98.3% Efficient GaN Isolated Bidirectional DC-DC Converter for DC Microgrid Energy Storage System Applications. IEEE Transactions on Industrial Electronics, 64(11), 9094-9103.
  • 15. Ding, Z., Yang, C., Zhang, Z., Wang, C., Xie, S., 2014. A Novel Soft-switching Multiport Bidirectional DC-DC Converter for Hybrid Energy Storage System. IEEE Trans. Power Electron., 29(4), 1595-1609.
  • 16. Liu, D., Li, H., 2006. A ZVS Bi-directional DC-DC Converter for Multiple Energy Storage Elements. IEEE Trans. Power Electron, 21(5), 1513-1517.
  • 17. Sathyan, S., Suryawanshi, H.M., Shitole, A.B., Ballal, M.S., Borghate, V.B., 2018. Soft-switched Interleaved DC/DC Converter as Front-end of Multi-inverter Structure for Micro Grid Applications. IEEE Trans. Power Electron., 33(9), 7645-7655.
  • 18. Falcones, S., Ayyanar, R., Mao, X., 2013. A DC-DC Multiport-converter-based Solid-state. IEEE Transactions on Power Electronics, 28(5), 2192-2203.
  • 19. Tao, H., Kotsopoulos, A., Duarte, J.L., Hendrix, M.A.M., 2008. Transformer-coupled Multiport ZVS Bidirectional DC-DC Converter with Wide Input Range. IEEE Trans. Power Electron., 23(2), 771-781.
  • 20. Karthikeyan, V., Gupta, R., 2018. Multiple-input Configuration of Isolated Bidirectional DC-DC Converter for Power Flow Control in Combinational Battery Storage. IEEE Trans. Ind. Informatics, 14(1), 2-11.
  • 21. Zhang, Z., Thomsen, O.C., Andersen, M.A.E., Nielsen, H.R., 2012. Dual-input Isolated Full-bridge Boost DC-DC Converter Based on the Distributed Transformers. IET Power Electron., 5(7), 1074-1083.
  • 22. Tao, H., Duarte, J.L., Hendrix, M.A.M., 2008. Three-port Triple-half-bridge Bidirectional Converter with Zero-voltage Switching. IEEE Trans. Power Electron., 23(2), 782-792.
  • 23. Dusmez, S., Li, X., Akin, B., 2016. A New Multiinput Three-level DC/DC Converter. IEEE Trans. Power Electron., 31(2), 1230-1240.
  • 24. Zeng, J., Qiao, W., Qu, L., 2015. An Isolated Three-port Bidirectional DC-DC Converter for Photovoltaic Systems with Energy Storage. IEEE Trans. Ind. Appl., 51(4), 3493-3503.
  • 25. Jianwu, Z., Wei, Q., Liyan, Q., Jiao, Y., 2014. An Isolated Multiport DC-DC Converter for Simultaneous Power Management of Multiple Different Renewable Energy Sources. IEEE J. Emerg. Sel. Top. Power Electron., 2(1), 70-78.
  • 26. Savrun, M.M., Atay, A., 2020. Multiport Bidirectional DC-DC Converter for PV Powered Electric Vehicle Equipped with Battery and Supercapacitor. IET Power Electron., 13(17), 3931-3939.
  • 27. Hong, J., Yin, J., Liu, Y., Peng, J., Jiang, H., 2019. Energy Management and Control Strategy of Photovoltaic/Battery Hybrid Distributed Power Generation Systems with an Integrated Three-Port Power Converter. IEEE Access, 7, 82838-82847.
  • 28. Wu, H., Jia, Y., Yang, F., Zhu, L., Xing, Y., 2020. Two-stage Isolated Bidirectional DC-AC Converters with Three-port Converters and Two DC Buses. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(4), 4428-4439.
  • 29. Wu, H., Zhang, J., Qin, X., Mu, T., Xing, Y., 2016. Secondary-side-regulated Soft-Switching Full-Bridge Three-port Converter Based on Bridgeless Boost Rectifier and Bidirectional Converter for Multiple Energy Interface. IEEE Transactions on Power Electronics, 31, 4847-4860.
  • 30. Ding, Z., Yang, C., Zhang, Z., Wang, C., Xie, S., 2014. A Novel Soft-switching Multiport Bidirectional DC–DC Converter for Hybrid Energy Storage System. IEEE Transactions on Power Electronics, 29, 1595-1609.
  • 31. Wu, F., Wang, K., Luo, S., 2021. Hybrid-three level Current-fed series-resonant Isolated DC-DC Converter and its Optimization Modulation Strategy. IEEE Transactions on Power Electronics, in press doi: 10.1109/TPEL.2021.3098452
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Mustafa Savrun This is me 0000-0001-5847-5082

Alihan Atay This is me

Publication Date September 30, 2021
Published in Issue Year 2021 Volume: 36 Issue: 3

Cite

APA Savrun, M. M., & Atay, A. (2021). Fotovoltaik Panel ve Batarya Entegre Sistemler için Yeni Bir Interleaved Tabanlı Çok Portlu İzole DA-DA Dönüştürücü Analizi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 743-754. https://doi.org/10.21605/cukurovaumfd.1005543