Araştırma Makalesi
BibTex RIS Kaynak Göster

SCR Uygulamaları için Oksalik Asit İşlemi ile Kordiyerit Yapının Yüzey Alanının İyileştirilmesi

Yıl 2022, Cilt: 37 Sayı: 1, 33 - 41, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1094938

Öz

Kordiyerit (2Al2O3-5SiO2-2MgO) seçici katalitik indirgeyici (SCR) uygulamalarında katalitik nanopartiküllerin egzoz borusu üzerinde konumlandırılmasını sağlayan ana taşıyıcı yapıdır. Bu yapıya daha fazla katalitik nanopartikül yüklenebilmesi için asit işlemi ile modifiye edilmesi gerekmektedir. Çalışmamızda bu yapılar 2 ve 4 saatlik sürelerde farklı oksalik asit oranları ile muamele edilmiştir. Asitle muamele edilmiş kordiyerit yapıların yüzey alanları Brunauer, Emmet ve Teller (BET) analizi ile ölçülmüş ve taramalı elektron mikroskobu-enerji dağılımlı X-ışını spektroskopisi (SEM-EDS) analizi ile morfolojik olarak incelenmiştir. BET analiz sonucuna göre bu yapıların yüzey alanı ölçümleri 163,601 m2/g’a ulaşmıştır. Elde edilen bu değer, işlem görmemiş kordiyeritin yüzey alanından yaklaşık 327 kat daha fazladır. SEM analizi sonucunda bu yapıların yüzeyindeki alüminyum (Al) ve magnezyum (Mg) elementlerinin yüzdesi azalırken, silikonun (Si) yüzdesi artmıştır. Yüksek yüzey alanının nedeni, kordiyerit yüzeyinden Al ve Mg iyonlarının uzaklaştırılması nedeniyle saf amorf silikanın oluşmasıdır. Böylece, kordiyerit yüzeyi üzerinde katalitik nanoparçacıkların daha fazla kaplanmasına izin verilebilir. Bu çalışmanın sonucunda çözeltinin asit miktarının ve asitle muamele süresinin kordiyerit yüzey alanını arttırdığı söylenebilir.

Kaynakça

  • 1. Zhang, X., Wu, Q., Diao, Q., Wang, J., Xiao, K., Yang, B., Wu, X., 2019. Performance Study for NH3-SCR at Low Temperature Based on Different Methods of Mnx/SEP Catalyst. Chemical Engineering Journal, 370, 364–71.
  • 2. Wu, R., Li, L., Zhang, N., He, J., Song, L., Zhang, G., Zhang, Z., He, H., 2020. Enhancement of Low-temperature NH3-SCR Catalytic Activity and H2O & SO2 Resistance Over Commercial V2O5-MoO3/TiO2 Catalyst by High Shear-induced Doping of Expanded Graphite. Catalysis Today, 1–9.
  • 3. Wu, S., Li, X., Fang, X., Sun, Y., Sun, J., Zhou, M., Zang, S., 2016. NO Reduction by CO Over TiO2-γ-Al2O3 Supported In/Ag Catalyst Under Lean Burn Conditions. Cuihua Xuebao/Chinese Journal of Catalysis, 37(11), 2018–24.
  • 4. Zhao, X., Zhang, X., Xu, Y., Liu, Y., Wang, X., Yu, Q., 2015. The Effect of H2O on the H2-SCR of NOx over Pt/HZSM-5. Journal of Molecular Catalysis A: Chemical, 400(x), 147–153.
  • 5. Yang, X., Su, Y.X., Qian, W.Y., Yuan, M.H., Zhou, H., Deng, W.Y., Zhao, B.T., 2017. Experimental Study on Selective Catalytic Reduction of NO by C3H6 Over Fe-Ag/Al2O3 Catalysts. Journal of Fuel Chemistry and Technology, 45(11), 1365–75.
  • 6. He, H., Yu, Y., 2005. Selective Catalytic Reduction of NOx Over Ag/Al2O3 Catalyst: From Reaction Mechanism to Diesel Engine Test. Catalysis Today, 100(1–2), 37–47.
  • 7. Azalim, S., Brahmi, R., Agunaou, M., Beaurain, A., Giraudon, J.M., Lamonier, J.F., 2013. Washcoating of Cordierite Honeycomb with Ce-Zr-Mn Mixed Oxides for VOC Catalytic Oxidation. Chemical Engineering Journal, 223, 536–46.
  • 8. Nijhuis, T.A., Beers, A.E.W., Vergunst, T., Hoek, I., Kapteijn, F., Moulijn, J.A., 2001. Preparation of Monolithic Catalysts. Catalysis Reviews-Science and Engineering, 43(4), 345–380.
  • 9. Williams, J.L., 2001. Monolith Structures, Materials, Properties and Uses. Catalysis Today, 69(1–4), 3–9.
  • 10. Chen, D., Feng, J., Sun, J., Cen, C., Tian, S., Yang, J., Xiong, Y., 2020. Molybdenum Modified Montmonrillonite Clay as an Efficient Catalyst for Low Temperature NH3-SCR, Journal of Chemical Technology and Biotechnology, 95(5), 1441–52.
  • 11. Şen, M., Emiroğlu, A.O., Çelik, M.B., 2016. CO and C3H8 Oxidation Activity of Pd/ZnO Nanowires/cordierite Catalyst. Applied Thermal Engineering, 99, 841–5.
  • 12. Zhou, H., Ge, M.Y., Wu, S., Ye, B., Su, Y., 2018. Iron Based Monolithic Catalysts Supported on Al2O3, SiO2, and TiO2: A Comparison for NO Reduction with Propane, Fuel, 220, 330–8.
  • 13. Trimm, D.L., 1995. Materials Selection and Design of High Temperature Catalytic Combustion Units. Catalysis Today, 26(3–4), 231–8.
  • 14. Kang, W., Choi, B., Jung, S., Park, S., 2018. PM and NOx Reduction Characteristics of LNT/DPF+SCR/DPF Hybrid System, Energy, 143, 439–47.
  • 15. Emiroğlu, A.O., 2017. Investigation of NOx Reduction Activity of Rh/ZnO Nanowires Catalyst. Atmospheric Pollution Research, 8(1), 149–53.
  • 16. Jung, Y., Pyo, Y.D., Jang, J., Kim, G.C., Cho, C.P., Yang, C., 2019. NO, NO2 and N2O Emissions Over a SCR Using DOC and DPF Systems with Pt Reduction, Chemical Engineering Journal, 369(2), 1059–1067.
  • 17. Meng, Z., Chen, C., Li, J., Fang, J., Tan, J., Qin, Y., Jiang, Y., Qin, Z., Bai, W., Liang, K., 2020. Particle Emission Characteristics of DPF Regeneration from DPF Regeneration Bench and Diesel Engine Bench Measurements. Fuel, 262, 116589.
  • 18. Govender, S., Friedrich, H.B., 2017. Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation. Catalysts, 7(2), 62.
  • 19. Yao, X., Zhang, L., Li, L., Liu, L., Cao, Y., Dong, X., Gao, F., Deng, Y., Tang, C., Chen, Z., Dong, L., Chen, Y., 2014. Investigation of the Structure, Acidity, and Catalytic Performance of CuO/Ti0.95Ce0.05O2 Catalyst for the Selective Catalytic Reduction of NO by NH3 at Low Temperature. Applied Catalysis B: Environmental, 150–151, 315–29.
  • 20. Sun, F., Liu, H., Shu, D., Chen, T., Chen, D., 2019. The Characterization and SCR Performance of Mn-containing α-Fe2O3 Derived from the Decomposition of Siderite. Minerals, 9(7), 393.
  • 21. Huang, K., Lu, K., Ni, S., Tong, S., 2012. Studies on Preparation and Catalytic Performances of Monolithic Solid Acid Catalysts. Asian Journal of Chemistry, 24(3), 997–1002.
  • 22. Shigapov, A.N., Graham, G.W., McCabe, R.W., Peck, M.P., Plummer, H.K., 1999. The Preparation of High-surface-area Cordierite Monolith by Acid Treatment. Applied Catalysis A: General, 182(1), 137–46.
  • 23. Madhusoodana, C.D., Das, R.N., Kameshima, Y., Yasumori, A., Okada, K., 2001. Preparation of ZSM-5 Thin Film on Cordierite Honeycomb by Solid State in Situ Crystallization. Microporous and Mesoporous Materials, 46 (2–3), 249–55.
  • 24. Soghrati, E., Kazemeini, M., Rashidi, A.M., Jozani, K.J., 2014. Development of a Structured Monolithic Support with a CNT Washcoat for the Naphtha HDS Process. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 887–95.
  • 25. Liu, Q., Liu, Z., Huang, Z., 2005. CuO Supported on Al2O3-coated Cordierite-honeycomb for SO2 and NO Removal from Flue Gas: Effect of Acid Treatment of the Cordierite. Industrial and Engineering Chemistry Research, 44(10), 3497–502.
  • 26. Liu, Q., He, Y., Yang, J., Xi, W., Wen, J., Zheng, H., 2012. Modification of Cordierite Honeycomb Ceramics Matrix for DeNOx Catalyst. Materials Research Society Symposium Proceedings, 1449, 141–6.
  • 27. Liu, Q., Liu, Z., Huang, Z., Xie, G., 2004. A Honeycomb Catalyst for Simultaneous NO and SO2 Removal from Flue Gas: Preparation and Evaluation. Catalysis Today, 93–95, 833–7.
  • 28. Li, F., Shen, B., Tian, L., Li, G., He, C., 2016. Enhancement of SCR Activity and Mechanical Stability on Cordierite Supported V2O5-WO3/TiO2 Catalyst by Substrate Acid Pretreatment and Addition of Silica. Powder Technology, 297, 384–91.
  • 29. Keskin, Z., Özgür, T., Özarslan, H., Yakaryılmaz, A.C., 2021. Effects of Hydrogen Addition into Liquefied Petroleum Gas Reductant on the Activity of Ag–Ti–Cu/Cordierite Catalyst for Selective Catalytic Reduction System. International Journal of Hydrogen Energy, 46(10), 7634–41.

Enhancement of Surface Area of Cordierite Structure by Oxalic Acid Treatment for SCR Applications

Yıl 2022, Cilt: 37 Sayı: 1, 33 - 41, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1094938

Öz

Cordierite (2Al2O3-5SiO2-2MgO) is the main carrier structure that enables the positioning of catalytic nanoparticles on the exhaust pipe in the selective catalytic reduction (SCR) applications. In order to be loaded more catalytic nanoparticles into this structure, it must be modified by acid treatment. In our study, these structures were treated with the different oxalic acid ratios for 2 and 4 hours. Brunauer, Emmet and Teller (BET) analysis were employed to measure the surface areas of acid-treated cordierite structures and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS) analysis was used to examine morphological structures of them. In consideration of BET analysis result, the surface area measurements of these structures reached up to 163.601 m2/g. The obtained value was about 327 times greater than the surface area of no treatment cordierite. In result of the SEM analysis, while the percentage of aluminum (Al) and magnesium (Mg) elements on the surface of these structures decreased, that of silicon (Si) increased. The reason of the high surface area is the formation of the pure amorphous silica due to the removal of Al and Mg ions from the surface of the cordierite. Thus, further coating of the catalytic nanoparticles on the cordierite surface could be allowed. As a result of this study, it could be said that the acid amount of the solution and the acid treatment duration enhances the surface area of the cordierite.

Kaynakça

  • 1. Zhang, X., Wu, Q., Diao, Q., Wang, J., Xiao, K., Yang, B., Wu, X., 2019. Performance Study for NH3-SCR at Low Temperature Based on Different Methods of Mnx/SEP Catalyst. Chemical Engineering Journal, 370, 364–71.
  • 2. Wu, R., Li, L., Zhang, N., He, J., Song, L., Zhang, G., Zhang, Z., He, H., 2020. Enhancement of Low-temperature NH3-SCR Catalytic Activity and H2O & SO2 Resistance Over Commercial V2O5-MoO3/TiO2 Catalyst by High Shear-induced Doping of Expanded Graphite. Catalysis Today, 1–9.
  • 3. Wu, S., Li, X., Fang, X., Sun, Y., Sun, J., Zhou, M., Zang, S., 2016. NO Reduction by CO Over TiO2-γ-Al2O3 Supported In/Ag Catalyst Under Lean Burn Conditions. Cuihua Xuebao/Chinese Journal of Catalysis, 37(11), 2018–24.
  • 4. Zhao, X., Zhang, X., Xu, Y., Liu, Y., Wang, X., Yu, Q., 2015. The Effect of H2O on the H2-SCR of NOx over Pt/HZSM-5. Journal of Molecular Catalysis A: Chemical, 400(x), 147–153.
  • 5. Yang, X., Su, Y.X., Qian, W.Y., Yuan, M.H., Zhou, H., Deng, W.Y., Zhao, B.T., 2017. Experimental Study on Selective Catalytic Reduction of NO by C3H6 Over Fe-Ag/Al2O3 Catalysts. Journal of Fuel Chemistry and Technology, 45(11), 1365–75.
  • 6. He, H., Yu, Y., 2005. Selective Catalytic Reduction of NOx Over Ag/Al2O3 Catalyst: From Reaction Mechanism to Diesel Engine Test. Catalysis Today, 100(1–2), 37–47.
  • 7. Azalim, S., Brahmi, R., Agunaou, M., Beaurain, A., Giraudon, J.M., Lamonier, J.F., 2013. Washcoating of Cordierite Honeycomb with Ce-Zr-Mn Mixed Oxides for VOC Catalytic Oxidation. Chemical Engineering Journal, 223, 536–46.
  • 8. Nijhuis, T.A., Beers, A.E.W., Vergunst, T., Hoek, I., Kapteijn, F., Moulijn, J.A., 2001. Preparation of Monolithic Catalysts. Catalysis Reviews-Science and Engineering, 43(4), 345–380.
  • 9. Williams, J.L., 2001. Monolith Structures, Materials, Properties and Uses. Catalysis Today, 69(1–4), 3–9.
  • 10. Chen, D., Feng, J., Sun, J., Cen, C., Tian, S., Yang, J., Xiong, Y., 2020. Molybdenum Modified Montmonrillonite Clay as an Efficient Catalyst for Low Temperature NH3-SCR, Journal of Chemical Technology and Biotechnology, 95(5), 1441–52.
  • 11. Şen, M., Emiroğlu, A.O., Çelik, M.B., 2016. CO and C3H8 Oxidation Activity of Pd/ZnO Nanowires/cordierite Catalyst. Applied Thermal Engineering, 99, 841–5.
  • 12. Zhou, H., Ge, M.Y., Wu, S., Ye, B., Su, Y., 2018. Iron Based Monolithic Catalysts Supported on Al2O3, SiO2, and TiO2: A Comparison for NO Reduction with Propane, Fuel, 220, 330–8.
  • 13. Trimm, D.L., 1995. Materials Selection and Design of High Temperature Catalytic Combustion Units. Catalysis Today, 26(3–4), 231–8.
  • 14. Kang, W., Choi, B., Jung, S., Park, S., 2018. PM and NOx Reduction Characteristics of LNT/DPF+SCR/DPF Hybrid System, Energy, 143, 439–47.
  • 15. Emiroğlu, A.O., 2017. Investigation of NOx Reduction Activity of Rh/ZnO Nanowires Catalyst. Atmospheric Pollution Research, 8(1), 149–53.
  • 16. Jung, Y., Pyo, Y.D., Jang, J., Kim, G.C., Cho, C.P., Yang, C., 2019. NO, NO2 and N2O Emissions Over a SCR Using DOC and DPF Systems with Pt Reduction, Chemical Engineering Journal, 369(2), 1059–1067.
  • 17. Meng, Z., Chen, C., Li, J., Fang, J., Tan, J., Qin, Y., Jiang, Y., Qin, Z., Bai, W., Liang, K., 2020. Particle Emission Characteristics of DPF Regeneration from DPF Regeneration Bench and Diesel Engine Bench Measurements. Fuel, 262, 116589.
  • 18. Govender, S., Friedrich, H.B., 2017. Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation. Catalysts, 7(2), 62.
  • 19. Yao, X., Zhang, L., Li, L., Liu, L., Cao, Y., Dong, X., Gao, F., Deng, Y., Tang, C., Chen, Z., Dong, L., Chen, Y., 2014. Investigation of the Structure, Acidity, and Catalytic Performance of CuO/Ti0.95Ce0.05O2 Catalyst for the Selective Catalytic Reduction of NO by NH3 at Low Temperature. Applied Catalysis B: Environmental, 150–151, 315–29.
  • 20. Sun, F., Liu, H., Shu, D., Chen, T., Chen, D., 2019. The Characterization and SCR Performance of Mn-containing α-Fe2O3 Derived from the Decomposition of Siderite. Minerals, 9(7), 393.
  • 21. Huang, K., Lu, K., Ni, S., Tong, S., 2012. Studies on Preparation and Catalytic Performances of Monolithic Solid Acid Catalysts. Asian Journal of Chemistry, 24(3), 997–1002.
  • 22. Shigapov, A.N., Graham, G.W., McCabe, R.W., Peck, M.P., Plummer, H.K., 1999. The Preparation of High-surface-area Cordierite Monolith by Acid Treatment. Applied Catalysis A: General, 182(1), 137–46.
  • 23. Madhusoodana, C.D., Das, R.N., Kameshima, Y., Yasumori, A., Okada, K., 2001. Preparation of ZSM-5 Thin Film on Cordierite Honeycomb by Solid State in Situ Crystallization. Microporous and Mesoporous Materials, 46 (2–3), 249–55.
  • 24. Soghrati, E., Kazemeini, M., Rashidi, A.M., Jozani, K.J., 2014. Development of a Structured Monolithic Support with a CNT Washcoat for the Naphtha HDS Process. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 887–95.
  • 25. Liu, Q., Liu, Z., Huang, Z., 2005. CuO Supported on Al2O3-coated Cordierite-honeycomb for SO2 and NO Removal from Flue Gas: Effect of Acid Treatment of the Cordierite. Industrial and Engineering Chemistry Research, 44(10), 3497–502.
  • 26. Liu, Q., He, Y., Yang, J., Xi, W., Wen, J., Zheng, H., 2012. Modification of Cordierite Honeycomb Ceramics Matrix for DeNOx Catalyst. Materials Research Society Symposium Proceedings, 1449, 141–6.
  • 27. Liu, Q., Liu, Z., Huang, Z., Xie, G., 2004. A Honeycomb Catalyst for Simultaneous NO and SO2 Removal from Flue Gas: Preparation and Evaluation. Catalysis Today, 93–95, 833–7.
  • 28. Li, F., Shen, B., Tian, L., Li, G., He, C., 2016. Enhancement of SCR Activity and Mechanical Stability on Cordierite Supported V2O5-WO3/TiO2 Catalyst by Substrate Acid Pretreatment and Addition of Silica. Powder Technology, 297, 384–91.
  • 29. Keskin, Z., Özgür, T., Özarslan, H., Yakaryılmaz, A.C., 2021. Effects of Hydrogen Addition into Liquefied Petroleum Gas Reductant on the Activity of Ag–Ti–Cu/Cordierite Catalyst for Selective Catalytic Reduction System. International Journal of Hydrogen Energy, 46(10), 7634–41.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Himmet Özarslan Bu kişi benim 0000-0002-1614-3343

Ali Keskin Bu kişi benim 0000-0002-1089-3952

Yayımlanma Tarihi 29 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 1

Kaynak Göster

APA Özarslan, H., & Keskin, A. (2022). Enhancement of Surface Area of Cordierite Structure by Oxalic Acid Treatment for SCR Applications. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(1), 33-41. https://doi.org/10.21605/cukurovaumfd.1094938