Research Article
BibTex RIS Cite

Poliüretan ile Güçlendirilmiş Balastın Hareket Eden Tekerlek Yükü Altındaki Deformasyon Davranışının Nümerik Olarak İncelenmesi

Year 2022, Volume: 37 Issue: 1, 79 - 91, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1094976

Abstract

Hareket eden tekerlek yükünden dolayı balastlı demiryolu hatlarında meydana gelen düşey deformasyonlar özellikle yüksek tren hızlarında ve zayıf taban zemini koşullarında hat düzensizliklerine sebep olmaktadır. Bu durum ise hat güvenliğini ve inşaat sonrası maliyeti olumsuz etkilemektedir. Bu çalışmada farklı miktarlarda poliüretan ile güçlendirilmiş balast tabakasının (70 kg/m3, 140 kg/m3 ve 210 kg/m3), zayıf taban zemini koşulunda ve farklı tren hızlarındaki (100 km/h, 200 km/h ve 300 km/h) düşey deformasyon davranışları sayısal olarak incelenmiştir. Bu kapsamda geliştirilen iki boyutlu nümerik modellerde statik ve hareket eden tekerlek yükleri uygulanmıştır. Analiz sonuçlarına göre poliüretan kullanımı, zayıf zemine oturan balastlı demiryolu hattında meydana gelen düşey deformasyonu önemli oranda iyileştirmektedir (>%87). Öte yandan düşük hızlarda düşük poliüretan miktarları kullanılabilirken, balast agregaları arasında oluşan daha güçlü poliüretan yapıdan dolayı artan tren hızlarında yüksek poliüretan miktarları tercih edilmelidir. Ayrıca poliüretan ile güçlendirilmiş veya güçlendirilmemiş bir demiryolu hattının analizinde statik tekerlek yükünün yerine hareket eden tekerlek yükü kullanılmalıdır.

References

  • 1. Boler, H., 2012. On the Shear Strength of Polyurethane Coated Railroad Ballast. Yüksek Lisans Tezi, University of Illinois at Urbana Champaign, Urbana, 81.
  • 2. Brown, S.F., Kwan, J., Thom, N.H., 2007. Identifying the Key Parameters That Influence Geogrid Reinforcement of Railway Ballast. Geotext. Geomembr., 25, 362-335.
  • 3. Dersch, M.S., Tutumluer, E., Peeler, C.T., Bower, D.K., 2010. Polyurethane Coating of Railroad Ballast Aggregate for Improved Performance. 2010 Joint Rail Conference (JRC2010), 27-29 Nisan 2010, Urbana, IL, ABD.
  • 4. Du Plooy, R.F., Gräbe, P.J., 2017.Characterisation of Rigid Polyurethane Foam- Reinforced Ballast Through Cyclic Loading Box Tests. J. South Afr. Inst. Civ. Eng., 59(2), 2-10.
  • 5. Esmaeili, M., Zakeri, J.A., Babaei, M., 2017. Laboratory and Field Investigation of the Effect of Geogrid Reinforced Ballast on Railway Track Lateral Resistance. Geotext. Geomembr., 45, 23-33.
  • 6. Halefom, B., 2017. Performance Evaluation of ELASTOTRACK Polyurethane Stabilized Railroad Ballasts. Yüksek Lisans Tezi, Addis Ababa University, Etiyopya, 65.
  • 7. Hussaini, S.K.K., Indraratna, B., Vinod, J.S., 2015. Performance Assessment of Geogrid- Reinforced Railroad Ballast During Cyclic Loading. Transp. Geotech., 2, 99-107.
  • 8. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C., 2011. Behavior of Geogrid-Reinforced Ballast Under Various Levels of Fouling. Geotext. eomembr., 29, 313-322.
  • 9. Indraratna, B., Nimbalkar, S., 2013. Stress- Strain Degradation Response of Railway Ballast Stabilized with Geosynthetics. J. Geotech. Geoenviron. Eng., 139, 684-700.
  • 10. Indraratna, B., Nimbalkar, S., Christie, D., Rujikiatkamjorn, C., Vinod, J.S., 2010. Field Assessment of the Performance of a Ballasted Rail Track with and without Geosynthetics. J. Geotech. Geoenviron. Eng., 136, 907-917.
  • 11. Indraratna, B., Nimbalkar, S., Neville, T., 2014. Performance Assessment of Reinforced Ballasted Rail Track. Ground Improv., 167, 24- 34.
  • 12. Indraratna, B., Nimbalkar, S., Ngo, N.T., Neville, T., 2016. Performance Improvement of Rail Track Substructure Using Artificial Inclusions-Experimental and Numerical Studies. Transp. Geotech., 8, 69-85.
  • 13. Indraratna, B., Nimbalkar, S., Rujikiatkamjorn, C., 2014. From Theory to Practice in Track Geomechanics-Australian Perspective for Synthetic Inclusions. Transp. Geotech., 1, 171- 187.
  • 14. Lee, S.H., Lee, S.J., Park, J.G., Choi, Y.T., 2017. An Experimental Study on the Characteristics of Polyurethane-mixed Coarse Aggregates by Large-Scale Triaxial Test. Constr. Build. Mater., 145, 117-125.
  • 15. Navaratnarajah, S.K., Indraratna, B., 2017. Use of Rubber Mats to Improve the Deformation and Degradation Behaviour of Rail Ballast Under Cyclic Loading. J. Geotech. Geoenviron. Eng., 143(6), 04017015.
  • 16. Ngo, N.T., Indraratna, B., Rujikiatkamjorn, C., 2016. Modelling Geogrid-Reinforced Railway Ballast Using the Discrete Element Method. Transp. Geotech., 8, 86-102.
  • 17. Nimbalkar, S., Indraratna, B., 2016. Improved Performance of Ballasted Rail Track Using Geosynthetics and Rubber Shockmat. J. Geotech. Geoenviron. Eng., 142(8), 04016031.
  • 18. Nimbalkar, S., Indraratna, B., Dash, S.K., Christie, D., 2012. Improved Performance of Railway Ballast Under Impact Loads Using Shock Mats. J. Geotech. Geoenviron. Eng., 138, 281-294.
  • 19. Qian, Y., Mishra, D., Tutumluer, E., Kazmee, H.A., 2015. Characterization of Geogrid Reinforced Ballast Behavior at Different Levels of Degradation Through Triazial Shear Strength Test and Discrete Element Modeling. Geotext. Geomembr., 43(5), 393-402.
  • 20. Raymond, G.P., 2002. Reinforced Ballastn Behaviour Subjected to Repeated Load. Geotext. Geomembr., 20(1), 39-61.
  • 21. Sweta, K., Hussaini, S.K.K., 2018. Effect of Shearing Rate on the Behavior of Geogrid- Reinforced Railroad Ballast Under Direct Shear Conditions. Geotext. Geomembr., 46, 251-256.
  • 22. Woodward, P.K., El Kacimi, A., Laghrouche, O., Medero, G., Banimahd, M., 2012. Application of Polyurethane Geocomposites to Help Maintain Track Geometry for High-speed Ballasted Railway Tracks. J. Zhejiang Univ., Sci. A (Appl. Phys. Eng.), 13(11), 836-849.
  • 23. Woodward, P.K., Medero, G., Griffiths, D.V., 2009. Reducing Track Faults Using Polymer Geocomposite Technology. The 8th International Conference on the Bearing Capacity of Roads, Railways and Airfields, 29 Haziran-2 Temmuz, Champaign, 1273-1282.
  • 24. Jiang, Y., Nimbalkar, S., 2019. Finite Element Modeling of Ballasted Rail Track Capturing Effects of Geosynthetic Inclusions. Front. Built Environ., 5(69), 1-11.
  • 25. Auersch, L., 2006. Dynamic Axle Loads on Tracks with and Without Ballast Mats: Numerical Results of Three-Dimensional Vehicle-track-soil Models. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transp., 220(2), 169-183.
  • 26. Anastasopoulos, I., Alfi, S., Gazetas, G., Bruni, S., Leuven, A.V., 2009. Numerical and Experimental Assessment of Advanced Concepts to Reduce Noise and Vibration on Urban Railway Turnouts. J. Transp. Eng., 135(5), 279-287.
  • 27. Keene, A., Edil, T., Fratta, D., Tinjum, J.,2013. Modeling the Effect of Polyurethane Stabilization of Rail Track Response. Geo- Congress 2013: Stability and Performance of SLopes and Embankments III, 3-7 Mart, San Diego, Kaliforniya, 1410-1419.
  • 28. Punetha, P., Maharjan, K., Nimbalkar, S., 2021. Modeling of the Dynamic Response of Critical Zones in a Ballasted Railway Track. Front. Built Environ., 7, 660292.
  • 29. Kalliainen, A., Kolisoja, P., Nurmikolu, A., 2016. 3D Finite Element Model as a Tool for Analyzing the Structural Behavior of a Railway Track. Procedia Eng. (Advances in Transportation Geotechnics 3: The 3rd International Conference on Transportation Geotechnics 2016), 143, 820-827.
  • 30. Correia, A.G., Cunha, J., Marcelino, J., Caldeira, L., Varandas, J., Dimitrovová, Z., Antão, A., Gonçalves da Silva, M., 2007. Dynamic Analysis of Rail Track for High Speed Trains: 2D Approach. 5th International Workshop on Application of Computational Mechanics in Geotechnical Engineering, 1-4 Nisan, Portekiz.
  • 31. Khan, S.N., 2018. Numerical Analysis of Deformation and Stability in the Formation for Railway Track. Yüksek Lisans Tezi, Bauhausuniversität Weimar, Weimar, 79.
  • 32. Faizan, A.A., Kırtel, O., Çelebi, E., Zülfikar, A.C., Göktepe, F., 2022. Experimental Validation of a Simplified Numerical Model to Predict Train-induced Ground Vibrations. Computer. Geotech., 141, 104547.
  • 33. Mezeh, R., Mroueh, H., Hosseingholian, M., Sadek, M., 2019. New Approach for the Assessment of Train/Track/Foundation Dynamics Using in-situ Measurements of High-speed Induced Vibrations. Soil Dyn. Earthq. Eng., 116, 50-59.
  • 34. AREMA, 2010. Manual for Railway Engineering. American Railway Engineering and Maintenance-of-Way Association, Lanham, 1312.
  • 35. AREA, 1974. Manual for Recommended Practice. American Railway Engineering Association, Washington, DC, 848.
  • 36. National Railway Administration, 2014. Code for Design of High Speed Railway (TB10621- 2014). China Railway Press, Beijing.
  • 37. Zhou, S., Wang, B., Shan, Y., 2020. Review of Research on High-speed Railway Subgrade Settlement in Soft Soil Area. Railw. Eng. Sci., 28,129-145.

Numerical Investigation of Deformation Behavior of Ballast Reinforced with Polyurethane Under a Moving Wheel Load

Year 2022, Volume: 37 Issue: 1, 79 - 91, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1094976

Abstract

The vertical deformation in ballasted railway tracks due to moving wheel loads causes track irregularities, particularly at high train speeds and under poor subgrade conditions. This adversely affects track safety and post-construction cost. In this study, the vertical deformation behavior of ballast reinforced with polyurethane in different amounts (70 kg/m3, 140 kg/m3 ve 210 kg/m3) under poor subgrade condition and at different train speeds (100 km/h, 200 km/h, and 300 km/h) was numerically investigated. In this context, static and moving wheel loads were applied in the developed two-dimensional numerical models. According to the results, the use of polyurethane significantly improves the vertical deformation in the ballasted railway track resting on poor subgrade soil (>87%). On the other hand, while low amounts of polyurethane can be used in tracks with low train speeds, high amounts of polyurethane should be preferred in tracks with high train speeds due to stronger polyurethane bonding between ballast particles. Moreover, instead of static wheel load, a moving wheel load should be taken into consideration in the analysis of a railway track with and without polyurethane.

References

  • 1. Boler, H., 2012. On the Shear Strength of Polyurethane Coated Railroad Ballast. Yüksek Lisans Tezi, University of Illinois at Urbana Champaign, Urbana, 81.
  • 2. Brown, S.F., Kwan, J., Thom, N.H., 2007. Identifying the Key Parameters That Influence Geogrid Reinforcement of Railway Ballast. Geotext. Geomembr., 25, 362-335.
  • 3. Dersch, M.S., Tutumluer, E., Peeler, C.T., Bower, D.K., 2010. Polyurethane Coating of Railroad Ballast Aggregate for Improved Performance. 2010 Joint Rail Conference (JRC2010), 27-29 Nisan 2010, Urbana, IL, ABD.
  • 4. Du Plooy, R.F., Gräbe, P.J., 2017.Characterisation of Rigid Polyurethane Foam- Reinforced Ballast Through Cyclic Loading Box Tests. J. South Afr. Inst. Civ. Eng., 59(2), 2-10.
  • 5. Esmaeili, M., Zakeri, J.A., Babaei, M., 2017. Laboratory and Field Investigation of the Effect of Geogrid Reinforced Ballast on Railway Track Lateral Resistance. Geotext. Geomembr., 45, 23-33.
  • 6. Halefom, B., 2017. Performance Evaluation of ELASTOTRACK Polyurethane Stabilized Railroad Ballasts. Yüksek Lisans Tezi, Addis Ababa University, Etiyopya, 65.
  • 7. Hussaini, S.K.K., Indraratna, B., Vinod, J.S., 2015. Performance Assessment of Geogrid- Reinforced Railroad Ballast During Cyclic Loading. Transp. Geotech., 2, 99-107.
  • 8. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C., 2011. Behavior of Geogrid-Reinforced Ballast Under Various Levels of Fouling. Geotext. eomembr., 29, 313-322.
  • 9. Indraratna, B., Nimbalkar, S., 2013. Stress- Strain Degradation Response of Railway Ballast Stabilized with Geosynthetics. J. Geotech. Geoenviron. Eng., 139, 684-700.
  • 10. Indraratna, B., Nimbalkar, S., Christie, D., Rujikiatkamjorn, C., Vinod, J.S., 2010. Field Assessment of the Performance of a Ballasted Rail Track with and without Geosynthetics. J. Geotech. Geoenviron. Eng., 136, 907-917.
  • 11. Indraratna, B., Nimbalkar, S., Neville, T., 2014. Performance Assessment of Reinforced Ballasted Rail Track. Ground Improv., 167, 24- 34.
  • 12. Indraratna, B., Nimbalkar, S., Ngo, N.T., Neville, T., 2016. Performance Improvement of Rail Track Substructure Using Artificial Inclusions-Experimental and Numerical Studies. Transp. Geotech., 8, 69-85.
  • 13. Indraratna, B., Nimbalkar, S., Rujikiatkamjorn, C., 2014. From Theory to Practice in Track Geomechanics-Australian Perspective for Synthetic Inclusions. Transp. Geotech., 1, 171- 187.
  • 14. Lee, S.H., Lee, S.J., Park, J.G., Choi, Y.T., 2017. An Experimental Study on the Characteristics of Polyurethane-mixed Coarse Aggregates by Large-Scale Triaxial Test. Constr. Build. Mater., 145, 117-125.
  • 15. Navaratnarajah, S.K., Indraratna, B., 2017. Use of Rubber Mats to Improve the Deformation and Degradation Behaviour of Rail Ballast Under Cyclic Loading. J. Geotech. Geoenviron. Eng., 143(6), 04017015.
  • 16. Ngo, N.T., Indraratna, B., Rujikiatkamjorn, C., 2016. Modelling Geogrid-Reinforced Railway Ballast Using the Discrete Element Method. Transp. Geotech., 8, 86-102.
  • 17. Nimbalkar, S., Indraratna, B., 2016. Improved Performance of Ballasted Rail Track Using Geosynthetics and Rubber Shockmat. J. Geotech. Geoenviron. Eng., 142(8), 04016031.
  • 18. Nimbalkar, S., Indraratna, B., Dash, S.K., Christie, D., 2012. Improved Performance of Railway Ballast Under Impact Loads Using Shock Mats. J. Geotech. Geoenviron. Eng., 138, 281-294.
  • 19. Qian, Y., Mishra, D., Tutumluer, E., Kazmee, H.A., 2015. Characterization of Geogrid Reinforced Ballast Behavior at Different Levels of Degradation Through Triazial Shear Strength Test and Discrete Element Modeling. Geotext. Geomembr., 43(5), 393-402.
  • 20. Raymond, G.P., 2002. Reinforced Ballastn Behaviour Subjected to Repeated Load. Geotext. Geomembr., 20(1), 39-61.
  • 21. Sweta, K., Hussaini, S.K.K., 2018. Effect of Shearing Rate on the Behavior of Geogrid- Reinforced Railroad Ballast Under Direct Shear Conditions. Geotext. Geomembr., 46, 251-256.
  • 22. Woodward, P.K., El Kacimi, A., Laghrouche, O., Medero, G., Banimahd, M., 2012. Application of Polyurethane Geocomposites to Help Maintain Track Geometry for High-speed Ballasted Railway Tracks. J. Zhejiang Univ., Sci. A (Appl. Phys. Eng.), 13(11), 836-849.
  • 23. Woodward, P.K., Medero, G., Griffiths, D.V., 2009. Reducing Track Faults Using Polymer Geocomposite Technology. The 8th International Conference on the Bearing Capacity of Roads, Railways and Airfields, 29 Haziran-2 Temmuz, Champaign, 1273-1282.
  • 24. Jiang, Y., Nimbalkar, S., 2019. Finite Element Modeling of Ballasted Rail Track Capturing Effects of Geosynthetic Inclusions. Front. Built Environ., 5(69), 1-11.
  • 25. Auersch, L., 2006. Dynamic Axle Loads on Tracks with and Without Ballast Mats: Numerical Results of Three-Dimensional Vehicle-track-soil Models. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transp., 220(2), 169-183.
  • 26. Anastasopoulos, I., Alfi, S., Gazetas, G., Bruni, S., Leuven, A.V., 2009. Numerical and Experimental Assessment of Advanced Concepts to Reduce Noise and Vibration on Urban Railway Turnouts. J. Transp. Eng., 135(5), 279-287.
  • 27. Keene, A., Edil, T., Fratta, D., Tinjum, J.,2013. Modeling the Effect of Polyurethane Stabilization of Rail Track Response. Geo- Congress 2013: Stability and Performance of SLopes and Embankments III, 3-7 Mart, San Diego, Kaliforniya, 1410-1419.
  • 28. Punetha, P., Maharjan, K., Nimbalkar, S., 2021. Modeling of the Dynamic Response of Critical Zones in a Ballasted Railway Track. Front. Built Environ., 7, 660292.
  • 29. Kalliainen, A., Kolisoja, P., Nurmikolu, A., 2016. 3D Finite Element Model as a Tool for Analyzing the Structural Behavior of a Railway Track. Procedia Eng. (Advances in Transportation Geotechnics 3: The 3rd International Conference on Transportation Geotechnics 2016), 143, 820-827.
  • 30. Correia, A.G., Cunha, J., Marcelino, J., Caldeira, L., Varandas, J., Dimitrovová, Z., Antão, A., Gonçalves da Silva, M., 2007. Dynamic Analysis of Rail Track for High Speed Trains: 2D Approach. 5th International Workshop on Application of Computational Mechanics in Geotechnical Engineering, 1-4 Nisan, Portekiz.
  • 31. Khan, S.N., 2018. Numerical Analysis of Deformation and Stability in the Formation for Railway Track. Yüksek Lisans Tezi, Bauhausuniversität Weimar, Weimar, 79.
  • 32. Faizan, A.A., Kırtel, O., Çelebi, E., Zülfikar, A.C., Göktepe, F., 2022. Experimental Validation of a Simplified Numerical Model to Predict Train-induced Ground Vibrations. Computer. Geotech., 141, 104547.
  • 33. Mezeh, R., Mroueh, H., Hosseingholian, M., Sadek, M., 2019. New Approach for the Assessment of Train/Track/Foundation Dynamics Using in-situ Measurements of High-speed Induced Vibrations. Soil Dyn. Earthq. Eng., 116, 50-59.
  • 34. AREMA, 2010. Manual for Railway Engineering. American Railway Engineering and Maintenance-of-Way Association, Lanham, 1312.
  • 35. AREA, 1974. Manual for Recommended Practice. American Railway Engineering Association, Washington, DC, 848.
  • 36. National Railway Administration, 2014. Code for Design of High Speed Railway (TB10621- 2014). China Railway Press, Beijing.
  • 37. Zhou, S., Wang, B., Shan, Y., 2020. Review of Research on High-speed Railway Subgrade Settlement in Soft Soil Area. Railw. Eng. Sci., 28,129-145.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Halil İbrahim Fedakar This is me 0000-0002-7561-5363

Publication Date March 29, 2022
Published in Issue Year 2022 Volume: 37 Issue: 1

Cite

APA Fedakar, H. İ. (2022). Poliüretan ile Güçlendirilmiş Balastın Hareket Eden Tekerlek Yükü Altındaki Deformasyon Davranışının Nümerik Olarak İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(1), 79-91. https://doi.org/10.21605/cukurovaumfd.1094976