Araştırma Makalesi
BibTex RIS Kaynak Göster

Vakum Destekli Reçine İnfüzyon Kalıplama ile Üretilmiş Twaron®/Epoksi Lamine Kompozit Plakaların 9 mm Mermi Tehdidine Karşı Balistik Performansı Üzerine Sayısal Çalışma

Yıl 2022, Cilt: 37 Sayı: 2, 483 - 498, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146416

Öz

Bu makale, vakum infüzyon yöntemiyle epoksi reçine emdirilen 10 ile 16 katman sayıları arasındaki istiflenmiĢ Twaron® kumaşların oluşturduğu plakaların balistik etkisi üzerine yapılan deneyleri ve eksenel simetrik modellenen Autodyn-2D® simülasyonlarından elde edilen sonuçları sunmaktadır. Üretilen panellerin balistik darbe dayanımı NIJ-STD-0108.01 standardına göre belirlenmiştir. Tüm paneller, zırh uygulaması için MP5 silahı ile ortalama 390 m/s hızına sahip 9 mm FMJ mermilere karşı test edilmiştir. Plakaların mermi ile etkileşimi, atış sonrası hasar fotoğrafları, kurşunun artık hızları, Autodyn-2D® simülasyonları ile karşılaştırılmıştır. Optimum mermi hızı, tabaka kalınlığı ve çekme hasarı gerinim değerini belirlemek için analizde parametrik çalışma yapılmıştır. Simülasyondan elde edilen verilerin deneylerle tutarlı olduğu görülmüştür.

Kaynakça

  • 1. Abrate, S., 2011. Impact Engineering of Composite Structures, 526, 403.
  • 2. Vaidya, U.K., 2011. Impact Response of Laminated and Sandwich Composites. 526, CISM International Centre for Mechanical Sciences, 97-191.
  • 3. Naik, N., Shrirao, P., 2004. Composite Structures Under Ballistic Impact. Composite Structures, 66, 1-4, 579-590.
  • 4. Zukas, J., 2004. Introduction to Hydrocodes. 49, Oxford, UK, 311.
  • 5. Şenel, F., Balya, B., Parnas, L., 2004. İleri Kompozit Zırh Malzemelerin Balistik Analizi. Savunma Teknolojileri Kongresi, Ankara.
  • 6. Bandaru, A. K., Vetiyatil, L., Ahmad, S., 2015. The Effect of Hybridization on The Ballistic Impact Behavior of Hybrid Composite Armors. Composites Part B: Engineering, 76, 300-319.
  • 7. Bandaru, A. K., Ahmad, S., 2017. Ballistic Impact Behaviour of Thermoplastic Kevlar Composites: Parametric Studies. Procedia Engineering, 173, 355-362.
  • 8. Wiśniewski, A., Pacek, D., 2010. Numerical Simulations of Penetration of 9 mm Parabellum Bullet into Kevlar Layers–Erosion Selection in AUTODYN Programme. Problemy Techniki Uzbrojenia, 39, 7-14.
  • 9. Wiśniewski, A., Pacek, D., 2011. Numerical Simulations of Penetration of 9 mm Parabellum Bullet into Kevlar Layers: Erosion Selection in Autodyn Program. Problemy Mechatroniki: Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa, 2, 11-20.
  • 10. Tham, C., Tan, V., Lee, H. P., 2008. Ballistic Impact of a KEVLAR® Helmet: Experiment and Simulations. International Journal of Impact Engineering, 35(5), 304-318.
  • 11. Rajput, M.S., Bhuarya, M.K., Gupta, A., 2017. Finite Element Simulation of Impact on PASGT Army Helmet. Procedia Engineering, 173, 251-258.
  • 12. Kumar, S., Gupta, D.S., Singh, I., Sharma, A., 2010. Behavior of Kevlar/epoxy Composite Plates Under Ballistic Impact. Journal of Reinforced Plastics and Composites, 29(13), 2048-2064.
  • 13. Ansari, M.M., Chakrabarti, A., 2015. Effect of Bullet Shape and H/A Ratio on Ballistic Impact Behaviour of FRP Composite Plate: A Numerical Study. International Journal of Research in Engineering and Technology, 04(13), 2321-7308.
  • 14. Soydan, A.M., Tunaboylu, B., Elsabagh, A.G., Sarı, A.K., Akdeniz, R., 2018. Simulation and Experimental Tests of Ballistic Impact on Composite Laminate Armor, Advances in Materials Science and Engineering, 2018, 1-12.
  • 15. Wiśniewski, A., Gmitrzuk, M., 2014. Validation of Numerical Model of the Twaron® CT709 Ballistic Fabric. Problemy Mechatroniki: Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa, 5, 19-31.
  • 16. Gogineni, S., Gao, X.L., David, N., Zheng, J.Q., 2012. Ballistic Impact of Twaron CT709® Plain Weave Fabrics. Mechanics of Advanced Materials and Structures, 19(6), 441-452.
  • 17. Dominiak, J., Stempień, Z., 2012. Finite-Element-Based Modeling of Ballistic Impact on a Human Torso Protected by Textile Body Armor. Innovative Materials Technologies in Made-Up Textile Articles, Protective Clothing Footwear, 2463, doi: https://doi.org/10.13140 /2.1.2463.1687.
  • 18. TEIJ Handbook Ballistics, 2019, (https://www.teijinaramid.com/wp-content/uploads/2019/11/TEIJ_Handbook_Ballistics_2019_DEF.pdf), Accessed on: 15.03.2022.
  • 19. Kölük Taş, M., 2019. Tabakalı Kompozit Malzemelerin Balistik Zırh Özelliklerinin Geliştirilmesi. Yüksek Lisans, İnönü Üniversitesi Fen Bilimleri Enstitüsü, 72.
  • 20. Datasheet for EPIKOTE™ Resin MGS™ LR160 Hexion Inc., (https://www.hexion.com/CustomServices/PDFDownloader.aspx?type=tds&pid=83b88d44-5814-6fe3-ae8a-ff0300fcd525), Accessed on: 15.03.2022.
  • 21. Ballistic Resistant Protective Materials, 1985. US Department of Justice. National Institute of Justice Standard, N., NIJ-STD-0108.01.
  • 22. Ramezani, A., Rothe, H., 2017. A New Approach to Modelling Fiber-Reinforced Plastics for Hydrocode Analysis. SIMUL 2017: The Ninth International Conference on Advances in System Simulation, Athens, Greece.
  • 23. Sohn, S.W., Kim, H.J., Kim, Y.T., 2003. A Study on the High Velocity Impact Resistance of Hybrid Composite Materials. Proceedings of the KSME Conference, 273-278.
  • 24. Özbek, Ö., 2021. Axial and Lateral Buckling Analysis of Kevlar/epoxy Fiber-reinforced Composite Laminates Incorporating Silica Nanoparticles. Polymer Composites, 42, 3, 1109-1122.
  • 25. Gogineni, S., 2011. Finite Element Analysis of Ballistic Penetration of Plain Weave Twaron CT709® Fabrics: A Parametric Study. Master of Science, Texas A & M University, 146.
  • 26. Cook W. H., 1983. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands: International Ballistics Committee, 21, 541-547.
  • 27. Beckwith, S.W., 2009. Composites Reinforcement Fibers: II-The Aramid and Polyethylene Families. SAMPE Journal, 45(6), 42-43.
  • 28. AUTODYN, 1998. Theory Manual, Revision 4.0, Century Dynamics Inc.,
  • 29. Lim, Y.Y., Miskon, A., Zaidi, A.M.A., Megat Ahmad, M.M.H., Abu Bakar, M., 2022. Numerical Simulation Study on Relationship between the Fracture Mechanisms and Residual Membrane Stresses of Metallic Material. Journal of Functional Biomaterials, 13(1), 20.

Numerical Study on the Ballistic Performance of Twaron®/Epoxy Laminated Composite Plates Manufactured by Vacuum Assisted Resin Infusion Moulding Against 9 mm Bullet Threat

Yıl 2022, Cilt: 37 Sayı: 2, 483 - 498, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146416

Öz

This article presents the experiments on the ballistic effect of plates formed by stacked Twaron® fabrics between 10 and 16 layer numbers impregnated with epoxy resin by vacuum infusion method and the results of Autodyn-2D® simulations using an axisymmetric model. The ballistic impact resistance of the panels produced was determined according to the NIJ-STD-0108.01 standard. All panels were tested against 9 mm FMJ bullets at an average velocity of 390 m/s with the MP5 gun for armour application. The interaction of the plates with the bullet, the post-shot damage photographs, residual velocities of the bullet were compared with Autodyn-2D® simulations. Parametric study was performed in the analysis to determine the optimum bullet velocity, layer thickness and tensile failure strain. It was observed that the data obtained from the simulations were consistent with the experiments.

Kaynakça

  • 1. Abrate, S., 2011. Impact Engineering of Composite Structures, 526, 403.
  • 2. Vaidya, U.K., 2011. Impact Response of Laminated and Sandwich Composites. 526, CISM International Centre for Mechanical Sciences, 97-191.
  • 3. Naik, N., Shrirao, P., 2004. Composite Structures Under Ballistic Impact. Composite Structures, 66, 1-4, 579-590.
  • 4. Zukas, J., 2004. Introduction to Hydrocodes. 49, Oxford, UK, 311.
  • 5. Şenel, F., Balya, B., Parnas, L., 2004. İleri Kompozit Zırh Malzemelerin Balistik Analizi. Savunma Teknolojileri Kongresi, Ankara.
  • 6. Bandaru, A. K., Vetiyatil, L., Ahmad, S., 2015. The Effect of Hybridization on The Ballistic Impact Behavior of Hybrid Composite Armors. Composites Part B: Engineering, 76, 300-319.
  • 7. Bandaru, A. K., Ahmad, S., 2017. Ballistic Impact Behaviour of Thermoplastic Kevlar Composites: Parametric Studies. Procedia Engineering, 173, 355-362.
  • 8. Wiśniewski, A., Pacek, D., 2010. Numerical Simulations of Penetration of 9 mm Parabellum Bullet into Kevlar Layers–Erosion Selection in AUTODYN Programme. Problemy Techniki Uzbrojenia, 39, 7-14.
  • 9. Wiśniewski, A., Pacek, D., 2011. Numerical Simulations of Penetration of 9 mm Parabellum Bullet into Kevlar Layers: Erosion Selection in Autodyn Program. Problemy Mechatroniki: Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa, 2, 11-20.
  • 10. Tham, C., Tan, V., Lee, H. P., 2008. Ballistic Impact of a KEVLAR® Helmet: Experiment and Simulations. International Journal of Impact Engineering, 35(5), 304-318.
  • 11. Rajput, M.S., Bhuarya, M.K., Gupta, A., 2017. Finite Element Simulation of Impact on PASGT Army Helmet. Procedia Engineering, 173, 251-258.
  • 12. Kumar, S., Gupta, D.S., Singh, I., Sharma, A., 2010. Behavior of Kevlar/epoxy Composite Plates Under Ballistic Impact. Journal of Reinforced Plastics and Composites, 29(13), 2048-2064.
  • 13. Ansari, M.M., Chakrabarti, A., 2015. Effect of Bullet Shape and H/A Ratio on Ballistic Impact Behaviour of FRP Composite Plate: A Numerical Study. International Journal of Research in Engineering and Technology, 04(13), 2321-7308.
  • 14. Soydan, A.M., Tunaboylu, B., Elsabagh, A.G., Sarı, A.K., Akdeniz, R., 2018. Simulation and Experimental Tests of Ballistic Impact on Composite Laminate Armor, Advances in Materials Science and Engineering, 2018, 1-12.
  • 15. Wiśniewski, A., Gmitrzuk, M., 2014. Validation of Numerical Model of the Twaron® CT709 Ballistic Fabric. Problemy Mechatroniki: Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa, 5, 19-31.
  • 16. Gogineni, S., Gao, X.L., David, N., Zheng, J.Q., 2012. Ballistic Impact of Twaron CT709® Plain Weave Fabrics. Mechanics of Advanced Materials and Structures, 19(6), 441-452.
  • 17. Dominiak, J., Stempień, Z., 2012. Finite-Element-Based Modeling of Ballistic Impact on a Human Torso Protected by Textile Body Armor. Innovative Materials Technologies in Made-Up Textile Articles, Protective Clothing Footwear, 2463, doi: https://doi.org/10.13140 /2.1.2463.1687.
  • 18. TEIJ Handbook Ballistics, 2019, (https://www.teijinaramid.com/wp-content/uploads/2019/11/TEIJ_Handbook_Ballistics_2019_DEF.pdf), Accessed on: 15.03.2022.
  • 19. Kölük Taş, M., 2019. Tabakalı Kompozit Malzemelerin Balistik Zırh Özelliklerinin Geliştirilmesi. Yüksek Lisans, İnönü Üniversitesi Fen Bilimleri Enstitüsü, 72.
  • 20. Datasheet for EPIKOTE™ Resin MGS™ LR160 Hexion Inc., (https://www.hexion.com/CustomServices/PDFDownloader.aspx?type=tds&pid=83b88d44-5814-6fe3-ae8a-ff0300fcd525), Accessed on: 15.03.2022.
  • 21. Ballistic Resistant Protective Materials, 1985. US Department of Justice. National Institute of Justice Standard, N., NIJ-STD-0108.01.
  • 22. Ramezani, A., Rothe, H., 2017. A New Approach to Modelling Fiber-Reinforced Plastics for Hydrocode Analysis. SIMUL 2017: The Ninth International Conference on Advances in System Simulation, Athens, Greece.
  • 23. Sohn, S.W., Kim, H.J., Kim, Y.T., 2003. A Study on the High Velocity Impact Resistance of Hybrid Composite Materials. Proceedings of the KSME Conference, 273-278.
  • 24. Özbek, Ö., 2021. Axial and Lateral Buckling Analysis of Kevlar/epoxy Fiber-reinforced Composite Laminates Incorporating Silica Nanoparticles. Polymer Composites, 42, 3, 1109-1122.
  • 25. Gogineni, S., 2011. Finite Element Analysis of Ballistic Penetration of Plain Weave Twaron CT709® Fabrics: A Parametric Study. Master of Science, Texas A & M University, 146.
  • 26. Cook W. H., 1983. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands: International Ballistics Committee, 21, 541-547.
  • 27. Beckwith, S.W., 2009. Composites Reinforcement Fibers: II-The Aramid and Polyethylene Families. SAMPE Journal, 45(6), 42-43.
  • 28. AUTODYN, 1998. Theory Manual, Revision 4.0, Century Dynamics Inc.,
  • 29. Lim, Y.Y., Miskon, A., Zaidi, A.M.A., Megat Ahmad, M.M.H., Abu Bakar, M., 2022. Numerical Simulation Study on Relationship between the Fracture Mechanisms and Residual Membrane Stresses of Metallic Material. Journal of Functional Biomaterials, 13(1), 20.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tayfur Kerem Demircioğlu Bu kişi benim 0000-0002-0518-0739

Fatih Balıkoğlu Bu kişi benim 0000-0003-3836-5569

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 2

Kaynak Göster

APA Demircioğlu, T. K., & Balıkoğlu, F. (2022). Numerical Study on the Ballistic Performance of Twaron®/Epoxy Laminated Composite Plates Manufactured by Vacuum Assisted Resin Infusion Moulding Against 9 mm Bullet Threat. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 483-498. https://doi.org/10.21605/cukurovaumfd.1146416