Research Article
BibTex RIS Cite

Binaya Entegre Fotovoltaik Sistemli Bir Güneş Evinde Enerji Analizi

Year 2022, Volume: 37 Issue: 3, 685 - 698, 17.10.2022
https://doi.org/10.21605/cukurovaumfd.1190294

Abstract

Dünyanın artan enerji talebi ve fosil yakıt kullanımı, yeni ve temiz enerji üretim yöntemlerinin aranmasına neden olmuştur. Yenilenebilir enerji kaynakları, enerji üretim yöntemleri için gelişen ve ortaya çıkan seçeneklerdir. Güneş, en erişilebilir ve istikrarlı yenilenebilir enerji kaynağıdır. Güneşten enerji elde etmek için çeşitli enerji üretim yöntemleri vardır. Binaya entegre fotovoltaik sistemi, güneşten gelen enerjiyi elektriğe dönüştürmek için güneş pillerini kullanarak elektrik üretmek için iyi bilinen bir yöntemdir. Binaya entegre fotovoltaik sistemler, fosil yakıtlardan enerji tüketimini azaltmak için yeni bir tekniktir. Pasif güneş evleri, yaşam alanının enerji ihtiyacının karşılanması, yaşam alanının ısıtma ve soğutma ihtiyacı için güneş enerjisi kullanımı anlamına gelmektedir. Bu çalışmada, İstanbul'da bulunan mevcut bir ev, bir bilgisayar programı yardımıyla modellenerek fotovoltaiklerle kaplanmış ve bu fotovoltaikler yardımıyla üretilen enerji miktarı sunulmuştur. Analiz, tüm cepheler için yıllık ortalama günlük elektrik üretim miktarının minimum değer olarak 1,05 kWh ve maksimum değer olarak 19,7 kWh arasında değiştiğini göstermektedir. Tüm cepheler için aylık ortalama elektrik üretim miktarı minimum değer olarak 31,8 kWh, maksimum değer olarak 599 kWh bulunmuştur.

References

  • 1. 2015 Key World Energy Statistics.International Energy Agency. 2015, Doi: https://doi.org/10.1787/22202811. Access Date: 10.08.2022.
  • 2. Catolico, A.C.C., Maestrini, M., Strauch, J.C.M., Giusti, F., Hunt, J., 2021. Socioeconomic Impacts of Large Hydroelectric Power Plants in Brazil: A Synthetic Control Assessment of Estreito Hydropower Plant. Renewable and Sustainable Energy Reviews, 151, 111508.
  • 3. Davraz, A., Nalbantçılar, M.T., Önden, İ., 2022. Hydrogeochemical Characteristics and Trace Element of Geothermal Systems in Central Anatolia, Turkey. Journal of African Earth Sciences, 104666.
  • 4. Poobalan, R.K., Barshilia, H.C., Basu, B., 2022. Recent Trends and Challenges in Developing Boride and Carbide-Based Solar Absorbers for Concentrated Solar Power. Solar Energy Materials and Solar Cells, 245, 111876.
  • 5. Bilgili, M., Tumse, S., Tontu, M., Sahin, B., 2021. Effect of Growth in Turbine Size on Rotor Aerodynamic Performance of Modern Commercial Large-Scale Wind Turbines. Arabian Journal for Science and Engineering, 46(8), 7185–7195.
  • 6. İlhan, A., Zontul, H., Tümse, S., Bilgili, M., Şahin, B., 2021. Flow Analyses of Diffuser Augmented Wind Turbines. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–25.
  • 7. Ilhan, A., Tumse S., Tasci M. O., Bilgili M., Sahin B., 2022. Particle Image Velocimetry Investigation of the Flow for the Curved Type Wind Turbine Shroud. Journal of Applied Fluid Mechanics, 15 (2):373–85.
  • 8. Tumse, S., İlhan, A., Bilgili, M., Sahin, B., 2022. Estimation of Wind Turbine Output Power using Soft Computing Models. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 3757–3786.
  • 9. Yasmeen, R., Zhaohui, C., Hassan Shah, W. U., Kamal, M. A., Khan, A., 2022. Exploring the Role of Biomass Energy Consumption, Ecological Footprint through FDI and Technological Innovation in B&R Economies: A Simultaneous Equation Approach, Energy, 244, 122703.
  • 10. Aronova, E., Vatin, N., Murgul, V., 2015. Design Energy-Plus-House for the Climatic Conditions of Macedonia. Procedia Engineering, 117:766-774.
  • 11. Tian, Z., Zhang, S., Li, H., Jiang, Y., Dong, J., Zhang, B., Yi, R., 2015. Investigations of Nearly (net) Zero Energy Residential Buildings in Beijing. Procedia Engineering, 121, 1051-1057. 12. Kwan, Y., Guan, L., 2015. Design a Zero Energy House in Brisbane, Australia. Procedia Engineering, 121:604-611.
  • 13. Berry, S., Whaley, D., 2015. The Implications of Mandating Photovoltaics on All New Homes. Energy Procedia, 83, 91-100.
  • 14. Adam, A.D., Apaydin, G., 2016. Grid Connected Solar Photovoltaic System as a Tool for Greenhouse Gas Emission Reduction in Turkey. Renewable and Sustainable Energy Reviews, 53, 1086-1091.
  • 15. Kapsalis, V., Karamanis, D., 2015. On the Effect of Roof Added Photovoltaics on Building’s Energy Demand. Energy and Buildings, 108, 195-204.
  • 16. Peng, C., Huang, Y., Wu, Z., 2011. Building- integrated Photovoltaics (BIPV) in Architectural Design in China. Energy and Buildings, 43, 3592-3598.
  • 17. Norton, B., Eames, P.C., Mallick, T.K., Huang, M.J., McCormack, S.J., Mondol, J.D., Yohanis, Y.G., 2011. Enhancing the Performance of Building Integrated Photovoltaics. Solar Energy, 85, 1629-1664.
  • 18. Shukla, A.K., Sudhakar, K., Baredar, P., 2016. A Comprehensive Review on Design of Building Integrated Photovoltaic System. Energy and Buildings, 128, 99-110.
  • 19. Yang, R.J., Zou, P.X.W., 2016. Building Integrated Photovoltaics (BIPV): Costs, Benefits, Risks, Barriers and Improvement Strategy. International Journal of Construction Management, 16-1, 39-53.
  • 20. Cucchiella, F., D’Adamo, I., Koh, S.C.L., 2015. Environmental and Economic Analysis of Building Integrated Photovoltaic Systems in Italian Regions. Journal of Cleaner Production, 98, 241-252.
  • 21. Biyik, E., Araz, M., Hepbasli, A., Shahrestani, M., Yao, R., Shao, L., Essah, E., Oliveira, A.C., Cano, T., Rico, E., Lechon, J.L., Andrade, L., Mendes, A., Atlı, Y.B., 2017. A Key Review of Building Integrated Photovoltaic (BIPV) Systems. Engineering Science and Technology, an International Journal, 20, 833-858. 22. Perez, M.J.R., Fthenakis, V., Kim, H.C., Pereira, A.O., 2012. Façade–Integrated Photovoltaics: A Life Cycle and Performance Assessment Case Study, Progress in Photovoltaics: Research and Applications, 20, 975-99.
  • 23. Turkish State Meteorological Service Web Site. https://www.mgm.gov.tr/. Access Date: 10.08.2022.
  • 24. Troup, L.N., Fannon, D.J., Eckelman, M.J., 2020. Spatio-temporal Changes among Site-to- Source Conversion Factors for Building Energy modeling, Energy and Buildings, 109832.

Energy Analysis in a Solar House with Building-Integrated Photovoltaic (BIPV) System

Year 2022, Volume: 37 Issue: 3, 685 - 698, 17.10.2022
https://doi.org/10.21605/cukurovaumfd.1190294

Abstract

Increased energy demand and fossil fuel usage of the world has led to the search for new and clean energy production methods. Renewable energy sources are developing and emerging options for energy production methods. Sun is the most accessible and stable renewable energy source. There are several methods to produce energy from the sun. The building-integrated photovoltaic (BIPV) system is a well-known method for generating electricity by using solar cells to transform the energy from the sun into electricity. BIPVs are a new technique to reduce energy consumption from fossil fuels. Passive solar houses mean that the energy demand of the living space is met with the usage of solar energy for the heating and cooling demand of the living space. In this study, an existing house, located in Istanbul, is modeled and covered with photovoltaics with the help of a computer program and the amount of energy produced with the aid of these photovoltaics is presented. The analysis demonstrates that the yearly average amount of daily electricity production is varied between 1.05 kWh as the minimum value and 19.7 kWh as the maximum value for all facades. The yearly average amount of monthly electricity production is varied between 31.8 kWh as the minimum value and 599 kWh as the maximum value for all facades.

References

  • 1. 2015 Key World Energy Statistics.International Energy Agency. 2015, Doi: https://doi.org/10.1787/22202811. Access Date: 10.08.2022.
  • 2. Catolico, A.C.C., Maestrini, M., Strauch, J.C.M., Giusti, F., Hunt, J., 2021. Socioeconomic Impacts of Large Hydroelectric Power Plants in Brazil: A Synthetic Control Assessment of Estreito Hydropower Plant. Renewable and Sustainable Energy Reviews, 151, 111508.
  • 3. Davraz, A., Nalbantçılar, M.T., Önden, İ., 2022. Hydrogeochemical Characteristics and Trace Element of Geothermal Systems in Central Anatolia, Turkey. Journal of African Earth Sciences, 104666.
  • 4. Poobalan, R.K., Barshilia, H.C., Basu, B., 2022. Recent Trends and Challenges in Developing Boride and Carbide-Based Solar Absorbers for Concentrated Solar Power. Solar Energy Materials and Solar Cells, 245, 111876.
  • 5. Bilgili, M., Tumse, S., Tontu, M., Sahin, B., 2021. Effect of Growth in Turbine Size on Rotor Aerodynamic Performance of Modern Commercial Large-Scale Wind Turbines. Arabian Journal for Science and Engineering, 46(8), 7185–7195.
  • 6. İlhan, A., Zontul, H., Tümse, S., Bilgili, M., Şahin, B., 2021. Flow Analyses of Diffuser Augmented Wind Turbines. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–25.
  • 7. Ilhan, A., Tumse S., Tasci M. O., Bilgili M., Sahin B., 2022. Particle Image Velocimetry Investigation of the Flow for the Curved Type Wind Turbine Shroud. Journal of Applied Fluid Mechanics, 15 (2):373–85.
  • 8. Tumse, S., İlhan, A., Bilgili, M., Sahin, B., 2022. Estimation of Wind Turbine Output Power using Soft Computing Models. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 3757–3786.
  • 9. Yasmeen, R., Zhaohui, C., Hassan Shah, W. U., Kamal, M. A., Khan, A., 2022. Exploring the Role of Biomass Energy Consumption, Ecological Footprint through FDI and Technological Innovation in B&R Economies: A Simultaneous Equation Approach, Energy, 244, 122703.
  • 10. Aronova, E., Vatin, N., Murgul, V., 2015. Design Energy-Plus-House for the Climatic Conditions of Macedonia. Procedia Engineering, 117:766-774.
  • 11. Tian, Z., Zhang, S., Li, H., Jiang, Y., Dong, J., Zhang, B., Yi, R., 2015. Investigations of Nearly (net) Zero Energy Residential Buildings in Beijing. Procedia Engineering, 121, 1051-1057. 12. Kwan, Y., Guan, L., 2015. Design a Zero Energy House in Brisbane, Australia. Procedia Engineering, 121:604-611.
  • 13. Berry, S., Whaley, D., 2015. The Implications of Mandating Photovoltaics on All New Homes. Energy Procedia, 83, 91-100.
  • 14. Adam, A.D., Apaydin, G., 2016. Grid Connected Solar Photovoltaic System as a Tool for Greenhouse Gas Emission Reduction in Turkey. Renewable and Sustainable Energy Reviews, 53, 1086-1091.
  • 15. Kapsalis, V., Karamanis, D., 2015. On the Effect of Roof Added Photovoltaics on Building’s Energy Demand. Energy and Buildings, 108, 195-204.
  • 16. Peng, C., Huang, Y., Wu, Z., 2011. Building- integrated Photovoltaics (BIPV) in Architectural Design in China. Energy and Buildings, 43, 3592-3598.
  • 17. Norton, B., Eames, P.C., Mallick, T.K., Huang, M.J., McCormack, S.J., Mondol, J.D., Yohanis, Y.G., 2011. Enhancing the Performance of Building Integrated Photovoltaics. Solar Energy, 85, 1629-1664.
  • 18. Shukla, A.K., Sudhakar, K., Baredar, P., 2016. A Comprehensive Review on Design of Building Integrated Photovoltaic System. Energy and Buildings, 128, 99-110.
  • 19. Yang, R.J., Zou, P.X.W., 2016. Building Integrated Photovoltaics (BIPV): Costs, Benefits, Risks, Barriers and Improvement Strategy. International Journal of Construction Management, 16-1, 39-53.
  • 20. Cucchiella, F., D’Adamo, I., Koh, S.C.L., 2015. Environmental and Economic Analysis of Building Integrated Photovoltaic Systems in Italian Regions. Journal of Cleaner Production, 98, 241-252.
  • 21. Biyik, E., Araz, M., Hepbasli, A., Shahrestani, M., Yao, R., Shao, L., Essah, E., Oliveira, A.C., Cano, T., Rico, E., Lechon, J.L., Andrade, L., Mendes, A., Atlı, Y.B., 2017. A Key Review of Building Integrated Photovoltaic (BIPV) Systems. Engineering Science and Technology, an International Journal, 20, 833-858. 22. Perez, M.J.R., Fthenakis, V., Kim, H.C., Pereira, A.O., 2012. Façade–Integrated Photovoltaics: A Life Cycle and Performance Assessment Case Study, Progress in Photovoltaics: Research and Applications, 20, 975-99.
  • 23. Turkish State Meteorological Service Web Site. https://www.mgm.gov.tr/. Access Date: 10.08.2022.
  • 24. Troup, L.N., Fannon, D.J., Eckelman, M.J., 2020. Spatio-temporal Changes among Site-to- Source Conversion Factors for Building Energy modeling, Energy and Buildings, 109832.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Atakan Tantekin This is me 0000-0002-8200-5686

N. Filiz (tümen) Özdil This is me 0000-0003-0083-7524

Publication Date October 17, 2022
Published in Issue Year 2022 Volume: 37 Issue: 3

Cite

APA Tantekin, A., & (tümen) Özdil, N. F. (2022). Energy Analysis in a Solar House with Building-Integrated Photovoltaic (BIPV) System. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(3), 685-698. https://doi.org/10.21605/cukurovaumfd.1190294