Research Article
BibTex RIS Cite

Sonlu Elemanlar Yöntemi ile Kompozit Konik Uçak Kanadının Serbest Titreşim Analizi

Year 2022, Volume: 37 Issue: 3, 741 - 752, 17.10.2022
https://doi.org/10.21605/cukurovaumfd.1190386

Abstract

Mühendislik uygulamalarında kullanılan yapıların statik ve dinamik kuvvetlerin etkisi altındaki tepkileri, yapıların tasarım aşamasında önemlidir. Bir yapı için dinamik kuvvetlerin tepkisinin belirlenmesi, öncelikle yapının mod şekli ve titreşim frekansları olan serbest titreşim özelliklerinin değerlendirilmesiyle gerçekleştirilir. Bu makale, havacılık endüstrisinde kullanılan NACA4415 tasarımı ve farklı yaygın malzemelerden oluşan konik uçak kanat yapılarının modal analizlerini sunmaktadır. Ayrıca kıvrık kanatçık eklemlerinin (winglets) doğal frekanslar üzerindeki etkisi incelenmiştir. Ana kanat yapıları olan nervür (rib) ve kabuk (shell) yapıları CATIA kullanılarak oluşturulmuştur ve ANSYS Workbench'e aktarılmıştır. Analizler, uçak kanadının bir ucu (kök kiriş) serbestken diğer ucu (uç kirişi) sabitlenerek üç boyutlu bir konsol kiriş olarak düşünülerek yapılmıştır. Uçak kanat yapılarının ilk on doğal frekansları ve ilgili mod şekilleri elde edilmiştir. Sonuçlar; kanat uçlarına kıvrık kanatçık eklenmesinin doğal frekansları oldukça düşürdüğünü ve kabuk malzemesi olarak Karbon Epoksi EY kullanmanın, Kevlar Epoksi kullanımına göre daha yüksek doğal frekanslar oluşturduğunu göstermiştir.

References

  • 1. Ozbek, M., Meng, F., Rixen, D., 2013. Challenges in Testing and Monitoring the In- Operation Vibration Characteristics of Wind Turbines. Mechanical Systems and Signal Processing, 41(2), 649-666. doi: https://doi.org/10.1016/j.ymssp.2013.07.023
  • 2. Hearn, G., Rene, T. 1991. Modal Analysis for Damage Detection in Structures. Journal of Structural Engineering, 3042-3063.
  • 3. Sivaraj, S., Nagendharan, S., Mohanavel, E., 2020. Experimental Investigation on Wheel Natural Frequency Performance Using Modal Analysis in Free and Loaded Condition. Materialstoday: Proceedings, 33(2), 3234-3242.
  • 4. Erdener, Ö., Yavuz, Y., 2003. Development of a Structural Model of an Airplane Wing. 11th National Machine Theory Symposium. Ankara.
  • 5. Dutton, S., Kelly D., Baker, A., 2004. Composite Materials for Aircraft Structures. American Institute of Aeronautics Inc., Virginia, 599.
  • 6. Yang, Y., Wu, Z., Yang, C., 2012. Equivalent Plate Modeling for Complex Wing Configurations. International Conference on Advances in Computational Modeling and Simulation, 409-415.
  • 7. Khadse, N., Zaweri, S., 2015. Modal Analysis of Aircraft Wing using Ansys Workbench Software Package. International Journal of Engineering Research & Technology, 4(7), 225-230.
  • 8. Sureka, K., Meher, S., 2015. Modeling and Structural Analysis on A300 Flight Wing by Using ANSYS. International Journal of Mechanical Engineering and Robotics Research, 4(2), 123-130.
  • 9. Banerjee, J., 2016. Modal Analysis of Sailplane and Transport Aircraft Wings Using the Dynamic Stiffness Method. 5th Symposium on the Mechanics of Slender Structures, London.
  • 10. Kuntoji, N., Kuppast, V., 2017. Study of Aircraft Wing with Emphasis on Vibration Characteristics. International Journal of Engineering Research and Application, 7(4), 1-8.
  • 11. Saran, V., Jayakumar, V., Bharathiraja, G., Jaseem, K. S., Ragul, G., 2017. Analysis of Natural Frequency for an Aircraft Wing Structure under Pre-sress Condition. International Journal of Mechanical Engineering and Technology, 8(8), 1118-1123.
  • 12. Günay, Ö., Özbay, M., 2019. Uçak Kanatlarının Tasarımı ve Sonlu Elemanlar Yöntemiyle Yapısal Analizi. 3rd International Symposium on Innovative Approaches in Scientific Studies, Ankara.
  • 13. Demirtaş, A., Bayraktar, M., 2019. Free Vibration Analysis of an Aircraft Wing. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 7(1), 12-21.
  • 14. Tang, J., Xi, P., Zhang, B., Hu, B., 2013. A Finite Element Parametric Modeling Technique of Aircraft Wing Structures. Chinese Journal of Aeronautics, 26(5), 1202-1210.
  • 15. Liming, Z., Jiye, W., Mingrui, L., Ming, L., Yingbin C., 2022. Evaluation of the Transient Performance of Magneto-Electro-Elastic Based Structures with the Enriched Finite Element Method. Composite Structures, 280, 114888.
  • 16. Doori, S., Noori, A. R., 2021. Finite Element Approach for the Bending Analysis of Castellated Steel Beams with Various Web Openings. ALKÜ Fen Bilimleri Dergisi, 3(2), 38-49.
  • 17. Francesco, P.P., Marzia, S.V., Raffaele B., Francesco, M., 2022. Finite Element Method for Stress-Driven Nonlocal Beams. Engineering Analysis with Boundary Elements, 134, 22-34.
  • 18. Na, W., Zhengzhao, L., Zhenghu, Z., Shaohong, L., Yingxian, L., 2022. Development and Verification of Three- Dimensional Equivalent Discrete Fracture Network Modelling Based on The Finite Element Method. Engineering Geology, 306, 106759.
  • 19. Noori, A.R., Aslan, A.T., Temel, B., 2019. Dairesel Plaklarin Sonlu Elemanlar Yöntemi ile Laplace Uzayinda Dinamik Analizi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 193-205.
  • 20. Junwei, C., Yundong, S., Xiaoping, Z., 2022. Implementation of the Novel Perfectly Matched Layer Element for Elastodynamic Problems in Time-domain Finite Element Method. Soil Dynamics and Earthquake Engineering, 152, 107054.
  • 21. ANSYS Inc., 2014. ANSYS version R15 Canonsburg Pennsylvania, PA, USA.
  • 22. Sathyanarayanan, S., Adluri, S. M. R., 2013. Incorporation of Friction Coefficient in the Design Equations for Elevated Temperature Tanks. Journal of Pressure Vessel Technology, 135(2), 021205.
  • 23. ANSYS Inc., 2013. Mechanical APDL Element Reference. Canonsburg Pennsylvania, PA, USA, 952.

Free Vibration Analysis of Tapered Composite Aircraft Wing via the Finite Element Method

Year 2022, Volume: 37 Issue: 3, 741 - 752, 17.10.2022
https://doi.org/10.21605/cukurovaumfd.1190386

Abstract

The responses of the structures used in engineering applications under the effects of static and dynamic forces are significant in the design phase. Determination of the response of dynamic forces for a structure is initially performed by the evaluation of free vibration characteristics that are mode shape of the structure and vibration frequencies. This paper presents modal analyses of tapered aircraft wing structures that consist of NACA4415 design and different common materials used in the aviation industry. Furthermore, the effect of winglets on natural frequencies is examined. The main wing structures as ribs and shells are drawn using CATIA and imported to ANSYS Workbench. Analyses have been carried out considering the aircraft wing as a three-dimensional cantilever beam by fixing one end (root chord) of the aircraft wing while the other end (tip chord) is free. The first ten modes of free vibration with their respective natural frequencies and mode shapes of the wing structures of the aircrafts are obtained. The results show that the winglets decrease the natural frequency noticeably and the shell material as Carbon Epoxy UD has been observed to have higher natural frequency compared with Kevlar Epoxy.

References

  • 1. Ozbek, M., Meng, F., Rixen, D., 2013. Challenges in Testing and Monitoring the In- Operation Vibration Characteristics of Wind Turbines. Mechanical Systems and Signal Processing, 41(2), 649-666. doi: https://doi.org/10.1016/j.ymssp.2013.07.023
  • 2. Hearn, G., Rene, T. 1991. Modal Analysis for Damage Detection in Structures. Journal of Structural Engineering, 3042-3063.
  • 3. Sivaraj, S., Nagendharan, S., Mohanavel, E., 2020. Experimental Investigation on Wheel Natural Frequency Performance Using Modal Analysis in Free and Loaded Condition. Materialstoday: Proceedings, 33(2), 3234-3242.
  • 4. Erdener, Ö., Yavuz, Y., 2003. Development of a Structural Model of an Airplane Wing. 11th National Machine Theory Symposium. Ankara.
  • 5. Dutton, S., Kelly D., Baker, A., 2004. Composite Materials for Aircraft Structures. American Institute of Aeronautics Inc., Virginia, 599.
  • 6. Yang, Y., Wu, Z., Yang, C., 2012. Equivalent Plate Modeling for Complex Wing Configurations. International Conference on Advances in Computational Modeling and Simulation, 409-415.
  • 7. Khadse, N., Zaweri, S., 2015. Modal Analysis of Aircraft Wing using Ansys Workbench Software Package. International Journal of Engineering Research & Technology, 4(7), 225-230.
  • 8. Sureka, K., Meher, S., 2015. Modeling and Structural Analysis on A300 Flight Wing by Using ANSYS. International Journal of Mechanical Engineering and Robotics Research, 4(2), 123-130.
  • 9. Banerjee, J., 2016. Modal Analysis of Sailplane and Transport Aircraft Wings Using the Dynamic Stiffness Method. 5th Symposium on the Mechanics of Slender Structures, London.
  • 10. Kuntoji, N., Kuppast, V., 2017. Study of Aircraft Wing with Emphasis on Vibration Characteristics. International Journal of Engineering Research and Application, 7(4), 1-8.
  • 11. Saran, V., Jayakumar, V., Bharathiraja, G., Jaseem, K. S., Ragul, G., 2017. Analysis of Natural Frequency for an Aircraft Wing Structure under Pre-sress Condition. International Journal of Mechanical Engineering and Technology, 8(8), 1118-1123.
  • 12. Günay, Ö., Özbay, M., 2019. Uçak Kanatlarının Tasarımı ve Sonlu Elemanlar Yöntemiyle Yapısal Analizi. 3rd International Symposium on Innovative Approaches in Scientific Studies, Ankara.
  • 13. Demirtaş, A., Bayraktar, M., 2019. Free Vibration Analysis of an Aircraft Wing. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 7(1), 12-21.
  • 14. Tang, J., Xi, P., Zhang, B., Hu, B., 2013. A Finite Element Parametric Modeling Technique of Aircraft Wing Structures. Chinese Journal of Aeronautics, 26(5), 1202-1210.
  • 15. Liming, Z., Jiye, W., Mingrui, L., Ming, L., Yingbin C., 2022. Evaluation of the Transient Performance of Magneto-Electro-Elastic Based Structures with the Enriched Finite Element Method. Composite Structures, 280, 114888.
  • 16. Doori, S., Noori, A. R., 2021. Finite Element Approach for the Bending Analysis of Castellated Steel Beams with Various Web Openings. ALKÜ Fen Bilimleri Dergisi, 3(2), 38-49.
  • 17. Francesco, P.P., Marzia, S.V., Raffaele B., Francesco, M., 2022. Finite Element Method for Stress-Driven Nonlocal Beams. Engineering Analysis with Boundary Elements, 134, 22-34.
  • 18. Na, W., Zhengzhao, L., Zhenghu, Z., Shaohong, L., Yingxian, L., 2022. Development and Verification of Three- Dimensional Equivalent Discrete Fracture Network Modelling Based on The Finite Element Method. Engineering Geology, 306, 106759.
  • 19. Noori, A.R., Aslan, A.T., Temel, B., 2019. Dairesel Plaklarin Sonlu Elemanlar Yöntemi ile Laplace Uzayinda Dinamik Analizi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 193-205.
  • 20. Junwei, C., Yundong, S., Xiaoping, Z., 2022. Implementation of the Novel Perfectly Matched Layer Element for Elastodynamic Problems in Time-domain Finite Element Method. Soil Dynamics and Earthquake Engineering, 152, 107054.
  • 21. ANSYS Inc., 2014. ANSYS version R15 Canonsburg Pennsylvania, PA, USA.
  • 22. Sathyanarayanan, S., Adluri, S. M. R., 2013. Incorporation of Friction Coefficient in the Design Equations for Elevated Temperature Tanks. Journal of Pressure Vessel Technology, 135(2), 021205.
  • 23. ANSYS Inc., 2013. Mechanical APDL Element Reference. Canonsburg Pennsylvania, PA, USA, 952.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Büşra Sarı This is me 0000-0002-5792-4381

Mahsa Kazemı Lıchaeı This is me 0000-0002-3121-3522

Sefa Yıldırım 0000-0002-9204-5868

Publication Date October 17, 2022
Published in Issue Year 2022 Volume: 37 Issue: 3

Cite

APA Sarı, B., Kazemı Lıchaeı, M., & Yıldırım, S. (2022). Free Vibration Analysis of Tapered Composite Aircraft Wing via the Finite Element Method. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(3), 741-752. https://doi.org/10.21605/cukurovaumfd.1190386