Research Article
BibTex RIS Cite

Closed-Loop Recycled Yarn Production from Yarn Wastes and Investigation of Their Physical Properties within the Scope of Sustainability

Year 2022, Volume: 37 Issue: 4, 1087 - 1102, 30.12.2022
https://doi.org/10.21605/cukurovaumfd.1230951

Abstract

Recycling in textile is very popular in terms of sustainability, and a lot of studies were made by many researchers in this area and are still being made. In this study, yarns containing 10-50% waste using cotton as the main fiber were obtained in 3 different yarn counts, Ne 10, Ne 20, and Ne 30, and it was aimed to reveal the effects of waste on yarn properties. As a result of the graphical and statistical evaluations of the obtained data, it was determined that the waste did not affect the yarn properties as negatively as expected. Ne 10 is the most suitable yarn count in the production of waste yarn, considering that the waste content and ratio in the blended yarns affect the yarn properties less and even do not make a significant difference. The optimum blend ratio of waste, in terms of yarn unevenness and yarn imperfections, is 30%. While a 30% waste rate is the most suitable in terms of all properties of Ne 20 yarns, it seems reasonable to obtain yarn with lower waste rates in Ne 30 yarns in terms of hairiness and breaking strength.

References

  • ⦁ Hazır Giyim Sektöründe Sürdürülebilir Trendler, https://uib.org.tr/tr/kbfile/ surdurulebilirlik- raporu-nisan-2017, (Accessed 12 January 2022)
  • ⦁ Boström, M., Micheletti, M., 2016. Introducing The Sustainability Challenge of Textiles and Clothing. J. Consum. Policy. 39 (4), 367-375.
  • ⦁ Preferred Fiber & Materials, Market Report, https://textileexchange.org/app/uploads/2022/10/ Textile-Exchange_PFMR_2022.pdf (Accessed 1 December 2022).
  • ⦁ Made-By Environmental Benchmark for Fibres, https:/⦁ /ww⦁ w.commonobjective.co/article/made- by-environmental-benchmark-for-fibres (Accessed 12 January 2022)
  • ⦁ A New Textiles Economy: Redesigning Fashion’s Future. http://www.ellenmacarthurfoundation.org/publica tions (Accessed 12 January 2022)
  • ⦁ The Risks of Cotton Farming- Environmental Risks. https:/⦁ /ww⦁ w.organiccotton.org/oc/Cotton- general/Impact-of-cotton/Risk-of-cotton- farming.php (Accessed 03 September 2022)
  • ⦁ Rana, S., Pichandi, S., Karunamoorthy, S., Bhattacharyya, A., Parveen, S., Fangueiro, R., 2015. Environmental and Social Assessment of Apparel Manufacturing, Carbon Footprint of Textile and Clothing Products. Handbook of Sustainable Apparel Production, 141-165.
  • ⦁ Kant, R., 2012. Textile Dyeing Industry an Environmental Hazard. Nat. Sci. 4 (1), 22-26.
  • ⦁ Hassaan, M.A., El Nemr, A., 2017. Health and Environmental Impacts of Dyes: Mini-Review. American J. Environ. Sci. Eng. 1(3), 64-67.
  • ⦁ Carbon Footprint Study., 2009. 220 Grams Textile, 11 Kilograms CO2, the Carbon Footprint of Clothing Systain Consulting GmbH. Final Summary, 2.
  • ⦁ Solid and Hazardous Waste: https://courses.lumenlearning.com/suny-monroe- environmentalbiology/chapter/13-2-waste- management-strategies/ (Accessed January 2022).
  • ⦁ Klöpffer, W., 1996. Allocation Rule for Open- Loop Recycling in Life Cycle Assessment. Int. J. Life Cycle Assess., 1(1), 27-31.
  • ⦁ Ekvall, T., Finnveden, G., 2001. Allocation in ISO 14041-A Critical Review. J. Clean. Product. 9(3), 197-208.
  • ⦁ Koo, H.J., Chang, G.S., Kim, S.H., Hahm, W.G., Park, S.Y., 2013. Effects of Recycling Processes on Physical, Mechanical, and Degradation Properties of PET Yarns. Fibers Polym. 14(12), 2083-2087.
  • ⦁ Duru, P., Babaarslan, O., 2003. Determining an Optimum Opening Roller Speed for Spinning Polyester/Waste Blend Rotor Yarns. Text. Res. J. 73(10), 907-911.
  • ⦁ Gun, A.D., Akturk, H.N., Macit, A.S., Alan, G., 2014. Dimensional and Physical Properties of Socks Made from Reclaimed Fibre. J. Text. I. 105(10), 1108-1117.
  • ⦁ Khan, M.K.R., Hossain, M.M., Sarker, R.C., 2015. Statistical Analyses and Predicting the Properties of Cotton/Waste Blended Open-End Rotor Yarn Using Taguchi OA Design. Int. J. Textile Sci. 4(2), 27-35.
  • ⦁ Wanassi, B., Azzouz, B., Hassen, M.B., 2016. Value-Added Waste Cotton Yarn: Optimization of Recycling Process and Spinning of Reclaimed Fibers. Industr. Crops and Products, 87, 27-32.
  • ⦁ Yelkovan, S., 2015. Pamuk ve Geri Dönüşüm Pamuk Liflerinden Eğrilen İpliklerin Özelliklerinin İncelenmesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Uşak, 147.
  • ⦁ Gun, A.D., Alan, G., Macit, A.S. 2016. Thermal Properties of Socks Made from Reclaimed Fiber. J. Text. I. 107(9), 1112-1121.
  • ⦁ Telli, A., 2016. Geri Dönüşüm Pamuk, R-PET ve Karışımlarının Denim Kumaş Üretiminde Kullanılması. Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Tekstil Mühendisliği Anabilim Dalı, Adana, 177.
  • ⦁ Yuksekkaya, M.E., Celep, G., Dogan, G., Tercan, M., Urhan, B., 2016. A Comparative Study of Physical Properties of Yarns and Fabrics Produced from Virgin and Recycled Fibers. J. Eng. Fibers Fabr., 11(2), 68-76.
  • ⦁ Vadicherla, T., Saravanan, D., 2017a. Effect of Blend Ratio on the Quality Characteristics of Recycled Polyester/Cotton Blended Ring Spun Yarn. Fibres Text. East. Eur, 2(122), 48-52.
  • ⦁ Sarioğlu, E., Kaynak, H.K., 2018. PET Bottle Recycling for Sustainable Textiles. Polyester- Production, Characterization, and Innovative Applications. Intech Open. London. 5-20.
  • ⦁ Béchir, W., Béchir, A., Mohamed, B.H., 2018. Industrial Cotton Waste: Recycling, Reclaimed Fiber Behavior and Quality Prediction of its Blend. Tekstil ve Konfeksiyon, 28(1), 14-20.
  • ⦁ Demiroz, Gun, A., Oner, E., 2019. Investigation of the Quality Properties of Open-End Spun Recycled Yarns Made from Blends of Recycled Fabric Scrap Wastes and Virgin Polyester Fiber. J. Text. I. 110(11), 1569-1579.
  • ⦁ Uyanık, S., 2019. A Study on the Suitability of Which Yarn Number to Use for Recycled Polyester Fiber. J. Text. I. 110(7), 1012-1031.
  • ⦁ Ute, T.B., Celik, P., Uzumcu, M.B., 2019. Utilization of Cotton Spinning Mill Wastes in Yarn Production. Textile Industry and Environment. IntechOpen. 53-63.
  • ⦁ Ütebay, B., Çelik, P., Çay, A., 2019. Effects of Cotton Textile Waste Properties on Recycled Fibre Quality. J. Clean. Prod., 222, 29-35.
  • ⦁ Kilic, M., Kaynak, H.K., Kilic, G.B., Demir, M., Tiryaki, E., 2019. Effects of Waste Cotton Usage on Properties of OE-Rotor Yarns and Knitted Fabrics. Industr. Textile, 70(3), 216-222.
  • ⦁ Sarıoğlu, E., 2019. An Investigation on Performance Optimization of R-PET/Cotton and V-PET/Cotton Knitted Fabric. Int. J. Cloth. Sci. Tech. 31(3), 439-452.
  • ⦁ Uyanık, S., 2020. Analysis of Splicing Method on Bursting Strength of the Knitted Fabrics. Çukurova University, J. Facul. Engineer. Architect, 35(4), 959-968.

İplik Atıklarından Kapalı Döngü Geri Dönüşüm İplik Üretimi ve Fiziksel Özelliklerinin Sürdürülebilirlik Kapsamında Araştırılması

Year 2022, Volume: 37 Issue: 4, 1087 - 1102, 30.12.2022
https://doi.org/10.21605/cukurovaumfd.1230951

Abstract

Tekstilde geri dönüşüm sürdürülebilirlik açısından oldukça popülerdir ve bu alanda birçok araştırmacı tarafından birçok çalışma yapılmış ve yapılmaya devam etmektedir. Bu çalışmada, Ne 10, Ne 20 ve Ne 30 olmak üzere 3 farklı iplik numarasında, ana lif olarak pamuk kullanılarak %10-50 telef içeren iplikler elde edilmiş ve telefin iplik özelliklerine etkilerinin ortaya çıkarılması amaçlanmıştır. Elde edilen verilerin grafiksel ve istatistiksel değerlendirmeleri sonucunda telefin iplik özelliklerini beklendiği kadar olumsuz etkilemediği belirlenmiştir. Harmanlanmış ipliklerdeki telef içeriği ve oranının iplik özelliklerini daha az etkilediği ve hatta önemli bir fark yaratmadığı düşünüldüğünde, telef iplik üretiminde Ne 10 en uygun iplik numarasıdır. İplik düzgünsüzlüğü ve iplik hataları açısından teleflerin optimum karışım oranı
%30'dur. Ne 20 ipliklerin tüm özellikleri açısından %30 fire oranı en uygunu iken, Ne 30 ipliklerde tüylülük ve kopma mukavemeti açısından daha düşük fire oranlarına sahip iplik elde etmek makul gözükmektedir.

References

  • ⦁ Hazır Giyim Sektöründe Sürdürülebilir Trendler, https://uib.org.tr/tr/kbfile/ surdurulebilirlik- raporu-nisan-2017, (Accessed 12 January 2022)
  • ⦁ Boström, M., Micheletti, M., 2016. Introducing The Sustainability Challenge of Textiles and Clothing. J. Consum. Policy. 39 (4), 367-375.
  • ⦁ Preferred Fiber & Materials, Market Report, https://textileexchange.org/app/uploads/2022/10/ Textile-Exchange_PFMR_2022.pdf (Accessed 1 December 2022).
  • ⦁ Made-By Environmental Benchmark for Fibres, https:/⦁ /ww⦁ w.commonobjective.co/article/made- by-environmental-benchmark-for-fibres (Accessed 12 January 2022)
  • ⦁ A New Textiles Economy: Redesigning Fashion’s Future. http://www.ellenmacarthurfoundation.org/publica tions (Accessed 12 January 2022)
  • ⦁ The Risks of Cotton Farming- Environmental Risks. https:/⦁ /ww⦁ w.organiccotton.org/oc/Cotton- general/Impact-of-cotton/Risk-of-cotton- farming.php (Accessed 03 September 2022)
  • ⦁ Rana, S., Pichandi, S., Karunamoorthy, S., Bhattacharyya, A., Parveen, S., Fangueiro, R., 2015. Environmental and Social Assessment of Apparel Manufacturing, Carbon Footprint of Textile and Clothing Products. Handbook of Sustainable Apparel Production, 141-165.
  • ⦁ Kant, R., 2012. Textile Dyeing Industry an Environmental Hazard. Nat. Sci. 4 (1), 22-26.
  • ⦁ Hassaan, M.A., El Nemr, A., 2017. Health and Environmental Impacts of Dyes: Mini-Review. American J. Environ. Sci. Eng. 1(3), 64-67.
  • ⦁ Carbon Footprint Study., 2009. 220 Grams Textile, 11 Kilograms CO2, the Carbon Footprint of Clothing Systain Consulting GmbH. Final Summary, 2.
  • ⦁ Solid and Hazardous Waste: https://courses.lumenlearning.com/suny-monroe- environmentalbiology/chapter/13-2-waste- management-strategies/ (Accessed January 2022).
  • ⦁ Klöpffer, W., 1996. Allocation Rule for Open- Loop Recycling in Life Cycle Assessment. Int. J. Life Cycle Assess., 1(1), 27-31.
  • ⦁ Ekvall, T., Finnveden, G., 2001. Allocation in ISO 14041-A Critical Review. J. Clean. Product. 9(3), 197-208.
  • ⦁ Koo, H.J., Chang, G.S., Kim, S.H., Hahm, W.G., Park, S.Y., 2013. Effects of Recycling Processes on Physical, Mechanical, and Degradation Properties of PET Yarns. Fibers Polym. 14(12), 2083-2087.
  • ⦁ Duru, P., Babaarslan, O., 2003. Determining an Optimum Opening Roller Speed for Spinning Polyester/Waste Blend Rotor Yarns. Text. Res. J. 73(10), 907-911.
  • ⦁ Gun, A.D., Akturk, H.N., Macit, A.S., Alan, G., 2014. Dimensional and Physical Properties of Socks Made from Reclaimed Fibre. J. Text. I. 105(10), 1108-1117.
  • ⦁ Khan, M.K.R., Hossain, M.M., Sarker, R.C., 2015. Statistical Analyses and Predicting the Properties of Cotton/Waste Blended Open-End Rotor Yarn Using Taguchi OA Design. Int. J. Textile Sci. 4(2), 27-35.
  • ⦁ Wanassi, B., Azzouz, B., Hassen, M.B., 2016. Value-Added Waste Cotton Yarn: Optimization of Recycling Process and Spinning of Reclaimed Fibers. Industr. Crops and Products, 87, 27-32.
  • ⦁ Yelkovan, S., 2015. Pamuk ve Geri Dönüşüm Pamuk Liflerinden Eğrilen İpliklerin Özelliklerinin İncelenmesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Uşak, 147.
  • ⦁ Gun, A.D., Alan, G., Macit, A.S. 2016. Thermal Properties of Socks Made from Reclaimed Fiber. J. Text. I. 107(9), 1112-1121.
  • ⦁ Telli, A., 2016. Geri Dönüşüm Pamuk, R-PET ve Karışımlarının Denim Kumaş Üretiminde Kullanılması. Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Tekstil Mühendisliği Anabilim Dalı, Adana, 177.
  • ⦁ Yuksekkaya, M.E., Celep, G., Dogan, G., Tercan, M., Urhan, B., 2016. A Comparative Study of Physical Properties of Yarns and Fabrics Produced from Virgin and Recycled Fibers. J. Eng. Fibers Fabr., 11(2), 68-76.
  • ⦁ Vadicherla, T., Saravanan, D., 2017a. Effect of Blend Ratio on the Quality Characteristics of Recycled Polyester/Cotton Blended Ring Spun Yarn. Fibres Text. East. Eur, 2(122), 48-52.
  • ⦁ Sarioğlu, E., Kaynak, H.K., 2018. PET Bottle Recycling for Sustainable Textiles. Polyester- Production, Characterization, and Innovative Applications. Intech Open. London. 5-20.
  • ⦁ Béchir, W., Béchir, A., Mohamed, B.H., 2018. Industrial Cotton Waste: Recycling, Reclaimed Fiber Behavior and Quality Prediction of its Blend. Tekstil ve Konfeksiyon, 28(1), 14-20.
  • ⦁ Demiroz, Gun, A., Oner, E., 2019. Investigation of the Quality Properties of Open-End Spun Recycled Yarns Made from Blends of Recycled Fabric Scrap Wastes and Virgin Polyester Fiber. J. Text. I. 110(11), 1569-1579.
  • ⦁ Uyanık, S., 2019. A Study on the Suitability of Which Yarn Number to Use for Recycled Polyester Fiber. J. Text. I. 110(7), 1012-1031.
  • ⦁ Ute, T.B., Celik, P., Uzumcu, M.B., 2019. Utilization of Cotton Spinning Mill Wastes in Yarn Production. Textile Industry and Environment. IntechOpen. 53-63.
  • ⦁ Ütebay, B., Çelik, P., Çay, A., 2019. Effects of Cotton Textile Waste Properties on Recycled Fibre Quality. J. Clean. Prod., 222, 29-35.
  • ⦁ Kilic, M., Kaynak, H.K., Kilic, G.B., Demir, M., Tiryaki, E., 2019. Effects of Waste Cotton Usage on Properties of OE-Rotor Yarns and Knitted Fabrics. Industr. Textile, 70(3), 216-222.
  • ⦁ Sarıoğlu, E., 2019. An Investigation on Performance Optimization of R-PET/Cotton and V-PET/Cotton Knitted Fabric. Int. J. Cloth. Sci. Tech. 31(3), 439-452.
  • ⦁ Uyanık, S., 2020. Analysis of Splicing Method on Bursting Strength of the Knitted Fabrics. Çukurova University, J. Facul. Engineer. Architect, 35(4), 959-968.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Seval Uyanık This is me 0000-0002-9513-5746

Pınar Parlakyiğit This is me 0000-0001-9235-6239

Sabih Ovalı This is me 0000-0002-6370-1977

Publication Date December 30, 2022
Published in Issue Year 2022 Volume: 37 Issue: 4

Cite

APA Uyanık, S., Parlakyiğit, P., & Ovalı, S. (2022). İplik Atıklarından Kapalı Döngü Geri Dönüşüm İplik Üretimi ve Fiziksel Özelliklerinin Sürdürülebilirlik Kapsamında Araştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 1087-1102. https://doi.org/10.21605/cukurovaumfd.1230951