Research Article
BibTex RIS Cite

Genlik Değişiminin Titreşimli Gerilim Giderme Verim Oranı Üzerindeki Etkisi

Year 2023, Volume: 38 Issue: 1, 1 - 12, 30.03.2023
https://doi.org/10.21605/cukurovaumfd.1273651

Abstract

Bu çalışmada, literatürde “Vibratory Stress Relief” adıyla bilinen “Titreşimli Gerilim Giderme” yöntemi, ANSYS programı aracılığıyla sonlu elemanlar yöntemi kullanılarak simüle edilmiştir. Paslanmaz çelik ve alüminyum malzeme kullanılarak modellenen üç farklı geometrideki öngerilmeli plakalar, üçer farklı öngerilme durumu için incelenmiştir. Öngerilmeli plaka oluşturabilmek için öncelikle plakaya yer değiştirme uygulanmış ve sonrasında serbest bırakılmıştır. Uygulanan yer değiştirme miktarı ile farklı değerlerde üçer öngerilme durumu yaratılmıştır. Öngerilmeli plakanın birinci rezonans frekansı tespit edilmiş ve devamında farklı genlik miktarlarında gerilim giderme işlemi gerçekleştirilmiştir. Kare ve iki farklı dikdörtgen geometriye sahip plakalarda gerçekleştirilen ANSYS simulasyonlarına göre, paslanmaz çelik için %80 ile %95 arasında artık gerilme değerlerinin azaldığı görülürken alüminyum için ise bu aralığın %71 ile %91 bandında olduğu görülmüştür. Ayrıca her bir plaka için oluşturulan gerinim-gerilme grafiklerine göre, yapı içerisindeki öngerilme miktarının, farklı genlik değerlerindeki titreşimler ile farklı oranlarda azaldığı tespit edilmiştir. Öngerilme miktarının artmasıyla plakalara uygulanabilecek titreşimli gerilim giderme genliği aralığının da arttığı görülmektedir.

References

  • ⦁ Walker, C. A., Waddell, A.J., Johnston, D.J., 1995. Vibratory Stress Relief—An Investigation of the Underlying Processes. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 209(1), 51–58.
  • ⦁ Zhu, W., Zhao, F., Yin, S., Liu, Y., Yang, R., 2021. Effect of Tensile Deformation on Residual Stress of Gh4169 Alloy. Materials, 14(7), 1773.
  • ⦁ Cai, G., Huang, Y., Huang, Y., 2017. Operating Principle of Vibratory Stress Relief Device Using Coupled Lateral-torsional Resonance. Journal of Vibroengineering, 19(6), 4083–4097.
  • ⦁ Xu, Y., Shi, Z., Li, B., Zhang, Z., 2021. Effects of TVSR Process on the Dimensional Stability and Residual Stress of 7075 Aluminum Alloy Parts. Reviews on Advanced Materials Science, 60(1), 631–642.
  • ⦁ Wu, S.F., Gao, X.S., Zhang, X.R., Gao, H.J., 2021. Finite Element Simulation Analysis on Residual Stress Relief of 7075 Aluminum Alloy Ring. Materials Science Forum, 1032, 135–140.
  • ⦁ Li, S., Fang, H., 2018. Vibration Stress Relief of DH 36 Rectangle Welded Plates. IOP Conference Series: Materials Science and Engineering, 322, 042002. 7. Zhao, L., Mo, R., Li, Y., Cai, G., 2021. Influence of the Nonlinear Stiffness Parameter of the Vibratory Stress Relief Device on Strong Nonlinear Superharmonic Resonance. IEEE Access, 9, 6899–6906.
  • ⦁ Vardanjani, M.J., Ghayour, M., Homami, R.M., 2016. Analysis of the Vibrational Stress Relief for Reducing the Residual Stresses Caused by Machining. Experimental Techniques, 40(2), 705–713.
  • ⦁ Luh, G.C., Hwang, R.M., 1998. Evaluating the Effectiveness of Vibratory Stress Relief by a Modified Hole-Drilling Method. The International Journal of Advanced Manufacturing Technology, 14(11), 815–823.
  • ⦁ Kacar, S., Yilmaz, O., 2019. Effect of Vibratory Stress Relief on Fatigue Life of S355J2 Steel Welded Joints. Makina Tasarım ve İmalat Dergisi, 17(1), 1-8.
  • ⦁ Tatar, F., Mahmoudi, A.H., Shooshtari, A., 2020. Vibratory Stress Relief of Welded Austenite Stainless Steel Plates: A Numerical and Experimental Approach. Iranian Journal of Materials Forming. 8(1), 50-64.
  • ⦁ Robinson, J.S., Hossain, M.S., Truman, C.E., 2021. Residual Stresses in the Aluminium Alloy 2014A Subject to PAG Quenching and Vibratory Stress Relief. The Journal of Strain Analysis for Engineering Design. 57(3), 167-176.
  • ⦁ Huo, Z., Gu, B., Jin, Z., Wang, Z., Hu, X., Xu, G., Lai, J., 2021. The Design of High- frequency Vibratory Stress Relief Device. International Core Journal of Engineering. 7(2), 288-292.
  • ⦁ Zhang, Q., Yu, L., Shang, X., Zhao, S., 2020. Residual Stress Relief of Welded Aluminum Alloy Plate Using Ultrasonic Vibration. Ultrasonics, 107, 106164.
  • ⦁ Gao, H.J., Zhang, Y.-D., Wu, Q., Song, J., 2017. Experimental Investigation on the Fatigue Life of Ti-6al-4v Treated by Vibratory Stress Relief. Metals, 7(5), 158.
  • ⦁ Lai, H.-H., Cheng, H.-C., Su, S.-H., Lin, C.- M., Wu, W., 2020. Evalution of Internal Friction in Low-Carbon Steel During Vibratory Stress Relief. Journal of Materials Research and Technology, 9(3), 5403–5409.
  • ⦁ Gong, H., Sun, Y., Liu, Y., Wu, Y., He, Y., Sun, X., Zhang, M., 2018. Effect of Vibration Stress Relief on the Shape Stability of Aluminum Alloy 7075 Thin-Walled Parts. Metals, 9(1), 27.
  • ⦁ U.S. Dept. of Defense. (1998). Metallic Materials and Elements for Aerospace Vehicle Structures. Washington: GPO, December 1, 2396.
  • ⦁ Robbins, M.E., (2004). In Topics in Vibratory Stress Relief of Weldments, 36.
  • ⦁ 20. Mechanical APDL Command Reference. (2017, July 14). Retrieved January 6, 2022, from https://www.mm.bme.hu/~gyebro/files/ ans_help_v182/ans_cmd/Hlp_C_CmdTOC.html

Effect of Amplitude Change on Vibratory Stress Relief Efficiency

Year 2023, Volume: 38 Issue: 1, 1 - 12, 30.03.2023
https://doi.org/10.21605/cukurovaumfd.1273651

Abstract

In this study, the “Vibratory Stress Relief” method, known as “Titreşimli Gerilim Giderme” in the Turkish literature, is simulated using the finite element method through the ANSYS. Prestressed plates in three different geometries, which are modeled using stainless steel and aluminum materials that are not suitable for conventional heat treatment, are examined for three different prestressed conditions. In order to model a prestressed plate, the plate is first displaced and then released. Three prestressed conditions at different values are modelled. The first resonance frequency of the prestressed plate is determined and
then stress relief is performed at different amplitudes. According to ANSYS simulations, it is observed that the residual stress values decreased between 80% and 95% for stainless steel in different situations, while this range is between 71% and 91% for aluminum. According to strain-stress graphs, it is observed that the prestress value in the structure decreases at different rates with vibrations at different amplitudes, while the range of vibration stress relief amplitude that can be applied to the plates expands with the increasing the amount of prestress.

References

  • ⦁ Walker, C. A., Waddell, A.J., Johnston, D.J., 1995. Vibratory Stress Relief—An Investigation of the Underlying Processes. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 209(1), 51–58.
  • ⦁ Zhu, W., Zhao, F., Yin, S., Liu, Y., Yang, R., 2021. Effect of Tensile Deformation on Residual Stress of Gh4169 Alloy. Materials, 14(7), 1773.
  • ⦁ Cai, G., Huang, Y., Huang, Y., 2017. Operating Principle of Vibratory Stress Relief Device Using Coupled Lateral-torsional Resonance. Journal of Vibroengineering, 19(6), 4083–4097.
  • ⦁ Xu, Y., Shi, Z., Li, B., Zhang, Z., 2021. Effects of TVSR Process on the Dimensional Stability and Residual Stress of 7075 Aluminum Alloy Parts. Reviews on Advanced Materials Science, 60(1), 631–642.
  • ⦁ Wu, S.F., Gao, X.S., Zhang, X.R., Gao, H.J., 2021. Finite Element Simulation Analysis on Residual Stress Relief of 7075 Aluminum Alloy Ring. Materials Science Forum, 1032, 135–140.
  • ⦁ Li, S., Fang, H., 2018. Vibration Stress Relief of DH 36 Rectangle Welded Plates. IOP Conference Series: Materials Science and Engineering, 322, 042002. 7. Zhao, L., Mo, R., Li, Y., Cai, G., 2021. Influence of the Nonlinear Stiffness Parameter of the Vibratory Stress Relief Device on Strong Nonlinear Superharmonic Resonance. IEEE Access, 9, 6899–6906.
  • ⦁ Vardanjani, M.J., Ghayour, M., Homami, R.M., 2016. Analysis of the Vibrational Stress Relief for Reducing the Residual Stresses Caused by Machining. Experimental Techniques, 40(2), 705–713.
  • ⦁ Luh, G.C., Hwang, R.M., 1998. Evaluating the Effectiveness of Vibratory Stress Relief by a Modified Hole-Drilling Method. The International Journal of Advanced Manufacturing Technology, 14(11), 815–823.
  • ⦁ Kacar, S., Yilmaz, O., 2019. Effect of Vibratory Stress Relief on Fatigue Life of S355J2 Steel Welded Joints. Makina Tasarım ve İmalat Dergisi, 17(1), 1-8.
  • ⦁ Tatar, F., Mahmoudi, A.H., Shooshtari, A., 2020. Vibratory Stress Relief of Welded Austenite Stainless Steel Plates: A Numerical and Experimental Approach. Iranian Journal of Materials Forming. 8(1), 50-64.
  • ⦁ Robinson, J.S., Hossain, M.S., Truman, C.E., 2021. Residual Stresses in the Aluminium Alloy 2014A Subject to PAG Quenching and Vibratory Stress Relief. The Journal of Strain Analysis for Engineering Design. 57(3), 167-176.
  • ⦁ Huo, Z., Gu, B., Jin, Z., Wang, Z., Hu, X., Xu, G., Lai, J., 2021. The Design of High- frequency Vibratory Stress Relief Device. International Core Journal of Engineering. 7(2), 288-292.
  • ⦁ Zhang, Q., Yu, L., Shang, X., Zhao, S., 2020. Residual Stress Relief of Welded Aluminum Alloy Plate Using Ultrasonic Vibration. Ultrasonics, 107, 106164.
  • ⦁ Gao, H.J., Zhang, Y.-D., Wu, Q., Song, J., 2017. Experimental Investigation on the Fatigue Life of Ti-6al-4v Treated by Vibratory Stress Relief. Metals, 7(5), 158.
  • ⦁ Lai, H.-H., Cheng, H.-C., Su, S.-H., Lin, C.- M., Wu, W., 2020. Evalution of Internal Friction in Low-Carbon Steel During Vibratory Stress Relief. Journal of Materials Research and Technology, 9(3), 5403–5409.
  • ⦁ Gong, H., Sun, Y., Liu, Y., Wu, Y., He, Y., Sun, X., Zhang, M., 2018. Effect of Vibration Stress Relief on the Shape Stability of Aluminum Alloy 7075 Thin-Walled Parts. Metals, 9(1), 27.
  • ⦁ U.S. Dept. of Defense. (1998). Metallic Materials and Elements for Aerospace Vehicle Structures. Washington: GPO, December 1, 2396.
  • ⦁ Robbins, M.E., (2004). In Topics in Vibratory Stress Relief of Weldments, 36.
  • ⦁ 20. Mechanical APDL Command Reference. (2017, July 14). Retrieved January 6, 2022, from https://www.mm.bme.hu/~gyebro/files/ ans_help_v182/ans_cmd/Hlp_C_CmdTOC.html
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Can Gönenli This is me 0000-0001-9163-1569

Oğuzhan Daş This is me 0000-0001-7623-9278

Publication Date March 30, 2023
Published in Issue Year 2023 Volume: 38 Issue: 1

Cite

APA Gönenli, C., & Daş, O. (2023). Genlik Değişiminin Titreşimli Gerilim Giderme Verim Oranı Üzerindeki Etkisi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(1), 1-12. https://doi.org/10.21605/cukurovaumfd.1273651