Research Article
BibTex RIS Cite

Sentetik Jetlerde Geometrik Farklılıkların Akış Davranışı Üzerine Etkisinin İncelenmesi

Year 2023, Volume: 38 Issue: 2, 305 - 316, 28.07.2023
https://doi.org/10.21605/cukurovaumfd.1333691

Abstract

Sentetik jet, belirli bir frekansta ve genlikte titreşen bir aktüatör tarafından oluşturulan bir akıştır. Bu çalışmada, dairesel ve tek dalga orifis geometrileri kullanılarak sentetik jetlerin hızları ve yayılımı ölçülmüştür. Akış yönünde eksenel hız ölçümleri PCE 423 model sıcak tel anemometresi kullanılarak alınmıştır. Ayrıca, TiO2 yüzey yağ görselleştirmesi kullanılarak radyal yöndeki hız dağılımlarını belirlemek için akış görselleştirme yapılmıştır. Ölçümler, eksenel mesafe (H) ve orifis çapı (D) arasındaki oranı temsil eden farklı H/D değerlerinde gerçekleştirilmiştir. Uyarma frekansı sinüs sinyal tipi ile 4 Hz ve 5 Hz arasında değiştirilmiştir. Sonuçlar, dairesel orifis geometrisinin eksenel yönde daha yüksek hızlara sahip olduğunu göstermiştir. Ancak, eksenel hız 4 Hz'de ölçüldüğünde, tek dalga geometrisinin H/D = 13 ve 14 değerlerinde daireye yakın sonuçlar verdiği, 5 Hz'de ise H/D = 12 ve 13 değerlerinde benzer sonuçlar sağladığı gözlemlenmiştir. Bu, yüksek H/D oranlarında geometrik şeklin çok önemli olmadığını düşündürmektedir. Ayrıca, tek dalga orifis geometrisi için eksenel hız değerleri, her iki uyarma frekansı için neredeyse aynı sonuçlar vermiştir. Akış görselleştirme sonuçları, H/D = 12 oranı için tek dalga orifis geometrisinin daha iyi performans gösterdiğini ve daha doğru ve iyi dağılmış bir hız alanı sağladığını göstermiştir. Sonuç olarak, bu çalışmanın bulguları, sentetik jetlerin özellikle geniş akış alanı etkileriyle ısı transferi uygulamalarında potansiyel olarak kullanışlı olabileceğini göstermektedir.

References

  • 1. Tesar, V., Kordik, J., 2009. Quasi-Similarity Model of Synthetic Jets. Sensors and Actuators A: Physical, 149, 255-265.
  • 2. Tesar, V., Kordik, J., 2011. Spectral Analysis of Synthetic Jets. Sensors and Actuators A: Physical, 167, 213-225.
  • 3. Oren, L., Gutmark, E., Muragappan, S., Khosla, S., 2009. Flow Characteristics of Non-Circular Synthetic Jets. AIAA, 2009-1309.
  • 4. Travnicek, Z., Brouckova, Z., Kordik, J., Vit, T., 2015. Visualization of Synthetic Jet Formation in Air. Journal of Visualization, 18, 595-609.
  • 5. Crispo, C.M., Greco, C.S., Avallone, F., Cardone, G., 2017. On the Flow Organization of a Chevron Synthetic Jet. Experimental Thermal and Fluid Science, 82, 136-146.
  • 6. Feero, M.A., Lavoie, P., Sullivan, P.E., 2015. Influence of Cavity Shape on Synthetic Jet Performance. Sensors and Actuators A: Physical, 223, 1-10.
  • 7. Rylatt, D.I., O’Donovan, T.S., 2013. Heat Transfer Enhancement to a Confined Impinging Synthetic Air Jet. Applied Thermal Engineering, 51, 468-475.
  • 8. Bhapkar, U.S., Srivastava, A., Agrawal A., 2014. Acoustic and Heat Transfer Characteristics of an Impinging Elliptical Synthetic Jet Generated by Acoustic Actuator. International Journal of Heat and Mass Transfer 79, 12-23.
  • 9. Ghaffari, O., Solovitz, S.A., Arik, M., 2016. An Investigation into Flow and Heat Transfer for a Slot Impinging Synthetic Jet. International Journal of Heat and Mass Transfer 100, 634-645.
  • 10. Travnicek, Z., Tesar, V., 2011. An Annular Impinging Jet Alternated by Pulse-Modulated Synthetic Jets. Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference (AJTEC2011), March 13-17, Honolulu, Hawaii, USA.
  • 11. Mangate, L.D., Chaudhari, M.B., 2015. Heat Transfer and Acoustic Study of Impinging Synthetic Jet Using Diamond and Oval Shape Orifice. International Journal of Thermal Sciences 89, 100-109.
  • 12. Lee, C.Y.Y., Woyciekoski, M.L., Copetti, J.B., 2016. Experimental Study of Synthetic Jets with Rectangular Orifice for Electronic Cooling. Experimental Thermal and Fluid Science, 78, 242-248.
  • 13. Gil, P., Strzelczyk, P., 2016. Performance and Efficiency of Loudspeaker Driven Synthetic Jet Actuator. Experimental Thermal and Fluid Science 76, 163-174.
  • 14. Hong, M.H., Cheng, S.Y., Zhong, S., 2020. Effect of Geometric Parameters on Synthetic Jet: A Review. Phys. Fluids, 32, 031301.
  • 15. Greco, C.S., Castrillo, G., Crispo, C.M., Astarita, T., Cardone, G., 2016. Investigation of Impinging Single and Twin Circular Synthetic Jets Flow Field. Experimental Thermal and Fluid Science 74, 354-367.
  • 16. Wang, L., Fenga, L., Xu, Y., Xu, Y., Wang, J., 2022. Experimental Investigation on Flow Characteristics and Unsteady Heat Transfer of Noncircular Impinging Synthetic Jets. International Journal of Heat and Mass Transfer, 190, 122760.

Investigating Effect of Geometric Differences on Fluid Behavior in Synthetic Jets

Year 2023, Volume: 38 Issue: 2, 305 - 316, 28.07.2023
https://doi.org/10.21605/cukurovaumfd.1333691

Abstract

A synthetic jet is a flow that is created by an actuator vibrating at a specific frequency and amplitude. In this study the velocities and propagation of synthetic jets have been measured using both circular and single-wave orifice geometries. Axial velocity measurements in the direction of flow have been taken using the PCE 423 model hot wire anemometer. Also flow visualization has been performed using TiO2 surface oil visualization to determine velocity distributions in the radial direction. The measurements have been conducted at different H/D values, representing the ratio between the axial distance (H) and the orifice diameter (D). The excitation frequency has been varied between 4 Hz and 5 Hz with a sinusoidal signal type. The results have shown that circular orifice geometry have higher velocities in the axial direction. However, When the axial velocity was measured at 4 Hz, it has been observed that the single wave geometry provided results close to a circle at H/D = 13 and 14 values, and at 5 Hz for H/D = 12 and 13 values. This suggests that the geometric shape is not very important at high H/D ratios. In addition, the axial velocity values for a single wave orifice geometry show almost the close results for both excitation frequency values. The flow visualization results have indicated that the single-wave orifice geometry with H/D=12 ratio perform better and provides a more accurate and well-distributed velocity field. In conclusion, the findings of this study suggest that synthetic jets could be potentially useful for industrial applications, especially in heat transfer applications with their extended flow field implications.

References

  • 1. Tesar, V., Kordik, J., 2009. Quasi-Similarity Model of Synthetic Jets. Sensors and Actuators A: Physical, 149, 255-265.
  • 2. Tesar, V., Kordik, J., 2011. Spectral Analysis of Synthetic Jets. Sensors and Actuators A: Physical, 167, 213-225.
  • 3. Oren, L., Gutmark, E., Muragappan, S., Khosla, S., 2009. Flow Characteristics of Non-Circular Synthetic Jets. AIAA, 2009-1309.
  • 4. Travnicek, Z., Brouckova, Z., Kordik, J., Vit, T., 2015. Visualization of Synthetic Jet Formation in Air. Journal of Visualization, 18, 595-609.
  • 5. Crispo, C.M., Greco, C.S., Avallone, F., Cardone, G., 2017. On the Flow Organization of a Chevron Synthetic Jet. Experimental Thermal and Fluid Science, 82, 136-146.
  • 6. Feero, M.A., Lavoie, P., Sullivan, P.E., 2015. Influence of Cavity Shape on Synthetic Jet Performance. Sensors and Actuators A: Physical, 223, 1-10.
  • 7. Rylatt, D.I., O’Donovan, T.S., 2013. Heat Transfer Enhancement to a Confined Impinging Synthetic Air Jet. Applied Thermal Engineering, 51, 468-475.
  • 8. Bhapkar, U.S., Srivastava, A., Agrawal A., 2014. Acoustic and Heat Transfer Characteristics of an Impinging Elliptical Synthetic Jet Generated by Acoustic Actuator. International Journal of Heat and Mass Transfer 79, 12-23.
  • 9. Ghaffari, O., Solovitz, S.A., Arik, M., 2016. An Investigation into Flow and Heat Transfer for a Slot Impinging Synthetic Jet. International Journal of Heat and Mass Transfer 100, 634-645.
  • 10. Travnicek, Z., Tesar, V., 2011. An Annular Impinging Jet Alternated by Pulse-Modulated Synthetic Jets. Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference (AJTEC2011), March 13-17, Honolulu, Hawaii, USA.
  • 11. Mangate, L.D., Chaudhari, M.B., 2015. Heat Transfer and Acoustic Study of Impinging Synthetic Jet Using Diamond and Oval Shape Orifice. International Journal of Thermal Sciences 89, 100-109.
  • 12. Lee, C.Y.Y., Woyciekoski, M.L., Copetti, J.B., 2016. Experimental Study of Synthetic Jets with Rectangular Orifice for Electronic Cooling. Experimental Thermal and Fluid Science, 78, 242-248.
  • 13. Gil, P., Strzelczyk, P., 2016. Performance and Efficiency of Loudspeaker Driven Synthetic Jet Actuator. Experimental Thermal and Fluid Science 76, 163-174.
  • 14. Hong, M.H., Cheng, S.Y., Zhong, S., 2020. Effect of Geometric Parameters on Synthetic Jet: A Review. Phys. Fluids, 32, 031301.
  • 15. Greco, C.S., Castrillo, G., Crispo, C.M., Astarita, T., Cardone, G., 2016. Investigation of Impinging Single and Twin Circular Synthetic Jets Flow Field. Experimental Thermal and Fluid Science 74, 354-367.
  • 16. Wang, L., Fenga, L., Xu, Y., Xu, Y., Wang, J., 2022. Experimental Investigation on Flow Characteristics and Unsteady Heat Transfer of Noncircular Impinging Synthetic Jets. International Journal of Heat and Mass Transfer, 190, 122760.
There are 16 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Melisa Yılmaz This is me 0009-0007-6800-3530

Naime Filiz Tümen Özdil This is me 0000-0003-0083-7524

Hürrem Akbıyık 0000-0002-1880-052X

Publication Date July 28, 2023
Published in Issue Year 2023 Volume: 38 Issue: 2

Cite

APA Yılmaz, M., Tümen Özdil, N. F., & Akbıyık, H. (2023). Investigating Effect of Geometric Differences on Fluid Behavior in Synthetic Jets. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(2), 305-316. https://doi.org/10.21605/cukurovaumfd.1333691