Araştırma Makalesi
BibTex RIS Kaynak Göster

Cu/Zn Oksit İkili Katalizörü Üretmek Amacıyla Malahit Cevherinin NH3/NH4NO3 Liçinde Optimum pH ve NH3 Derişiminin Yanıt Yüzey Yöntemiyle Belirlenmesi

Yıl 2023, Cilt: 38 Sayı: 2, 333 - 345, 28.07.2023
https://doi.org/10.21605/cukurovaumfd.1333949

Öz

Bu çalışmada, bir hidrosikarbonat minerali olan malahit ve bir karbonatlı mineral olan simitsonit içeren bakır cevherinin hidrometalurjik yöntemle işlenmesi neticesinde Cu/Zn oksit ikili katalizörü üretilmiştir. Cevherden maksimum oranda bakır ve minimum oranda çinkonun liç çözeltisine geçmesini sağlayacak ancak cevherde bulunan diğer metallerin çözünmesini engelleyecek pH ve çözücü derişiminin optimum değerleri yanıt yüzey yöntemi ile belirlenmiştir. Yanıt yüzey yönteminde elde edilen deneysel bulgulara çoklu regresyon analizi yapılarak bakır ve çinko liç verimleri ile bağımsız değişkenler arasındaki ilişkiyi gösteren ikinci dereceden model denklemler elde edilmiştir. Bakır ve çinko liç verimi üzerine NH3 derişiminin pH’dan daha etkili bir parametre olduğu belirlenmiştir. NH3 ve NH4NO3 derişimleri ile pH için optimum değerler sırasıyla 0,38 M, 0,11 M ve 9,80 olarak bulunmuştur. Optimum koşullarda cevherdeki bakırın %82,3’ünün çinkonun ise %45,1’inin çözeltiye geçtiği belirlenmiştir. Liç sonucunda elde edilen çözeltideki Cu+2 ve Zn+2 iyonları Na2CO3 çözeltisi ile çöktürülmüş ve oluşan katı ürün 350 °C’de 6 saat süreyle kalsine edilerek Cu/Zn oksit ikili katalizörü üretilmiştir. Katalizörün ağırlıkça bakır oksit içeriği yaklaşık %44 ve çinko oksit içeriği %56 olarak tespit edilmiştir.

Kaynakça

  • 1. Aslan, G., 2005. Metal Oksitler ile İyileştirilmiş Alkan Dehidrojenasyon İkili Katalizörlerinin Hazırlanması ve Tanımlanması. Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, 69.
  • 2. Baysar, A., 1985. In Situ FTIR Spectroscopy of Adsorbed Species on Mixed Metal Oxide Catalysts for Higher Alcohol Synthesis. M. Sc. Thesis, Iowa State University, Graduate Collage, Ames, Iowa, USA, 202.
  • 3. Mota, N., Guil-Lopez, R., Pawelec, B.G., Fierro, L.G., Navarro, R.M., 2018. Highly Active Cu/ZnO-Al Catalyst for Methanol Synthesis: Effect of Aging on its Structure and Activity. Royal Society of Chemistry Advances, 8(37), 20619-20629.
  • 4. Aydoğan, S., Aras, A., Canbazoğlu, M., 2005a. Dissolution Kinetics of Sphalerite in Acidic Ferric Chloride Leaching. Chemical Engineering Journal, 114(1-3), 67-72.
  • 5. Ekmekyapar, A., Aktaş, E., Künkül, A., Demirkıran, N., 2012. Investigation of Leaching Kinetics of Copper from Malachite Ore in Ammonium Nitrate Solutions. Metallurgical and Materials Transactions B., 43(4), 764-772.
  • 6. Habashi, F., 1997. Handbook of Extactive Metallurgy. Wiley Company, Weinheim, Germany, 1228.
  • 7. Long, X., Chen, Y., Chen, J., Xu, Z., Liu, Q., Du, Z., 2016. The Effect of Water Molecules on the Thiol Collector Interaction on the Galena (Pbs) and Sphalerite (Zns) Surfaces: A DFT study. Applied Surface Science, 389, 103-111.
  • 8. Faris, N., Ram, R., Chen, M., Tardio, J., Pownceby, M. I., Jones, L., McMaster, S., Webster, N.A.S, Bhargava, S., 2017. The Effect of Thermal Pre-Treatment on the Dissolution of Chalcopyrite (Cufes2) in Sulfuric Acid Media. Hydrometallurgy, 169, 68-78.
  • 9. Liu, H., Xia, J., Nie, Z, Liu, L., Wang, L, Ma, C., Zheng, L., Zhao, Y., Wen, W., 2017. Comparative study of S, Fe and Cu Speciation Transformation During Chalcopyrite Bioleaching by Mixed Mesophiles and Mixed Thermophiles. Minerals Engineering. 106, 22-32.
  • 10. Zhang, Y., Deng, J., Chen, J., Yu, R., Xing, X., 2013. Leaching of Zinc from Calcined Smithsonite Using Sodium Hydroxide. Hydrometallurgy, 131-132, 89-92.
  • 11. Ekmekyapar, A., Demirkıran, N., Künkül, A., Aktaş, E., 2015. Leaching of Malachite Ore in Ammonium Sulfate Solutions and Production of Copper Oxide. Brazilian Journal of Chemical Engineering, 32(1), 155-165.
  • 12. Tanaydın, M.K., Bakıcı Tanaydın, Z., Demirkıran, N., 2021. Determination of Optimum Process Conditions by Central Composite Design Method and Examination of Leaching Kinetics of Smithsonite Ore using Nitric Acid Solution. Journal of Sustainable Metallurgy, 7(1), 178-191.
  • 13. Bingöl, D., Canbazoğlu, M., 2004. Dissolution Kinetics of Malachite in Sulphuric Acid. Hydrometallurgy, 72(1-2), 159-165.
  • 14. Akkaş, C., 2011. Oksitli Bakır Cevherlerinden Bakır Kazanımı, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Metalurji ve Malzeme Mühendisliği Anabilim Dalı, İstanbul, 68.
  • 15. Ghosh, M.K., Anand, S., Das, R. P., 1989. Effect of Dissolved Impurities During Ammonia Leaching of Pure Zinc Sulphide. Hydrometallurgy, 22(1-2), 207-221.
  • 16. Künkül, A., Kocakerim, M., Yapıcı, S., Demirbağ, A., 1994. Leaching Kinetics of Malachite in Ammonia Solutions. International Journal of Mineral Processing, 41(3-4), 167-182.
  • 17. Künkül, A., Kocakerim, M., Yapıcı, S., Demirbağ, A., 1994. Leaching Kinetics of Malachite in Ammonia Solutions. International Journal of Mineral Processing, 41(3-4), 167-182.
  • 18. Ekmekyapar, A., Oya, R., Künkül, A., 2003. Dissolution Kinetics of Oxidized Copper Ore in Ammonium Chloride Solution. Chemical and Biochemical Engineering Quarterly, 17, 261-266.
  • 19. Aydoğan, S., Aras, A., Canbazoğlu, M., 2005b. Oxidation Ammonia Leaching of Sphalerite Concantrate. Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 20(2), 55-62.
  • 20. Bingöl, D., Canbazoğlu, M., Aydoğan, S., 2005. Disssolution Kinetics of Malachite in Ammonia/Ammonium Carbonate Leaching. Hydrometallurgy, 76(1-2), 55-62.
  • 21. Bates, R.G., Pinching, G.D., 1949. Acidic Dissociation Constant of Ammonium Ion at 0° to 50°C and the Base Strength of Ammonia. Journal of Research of the National Bureau of Standards, 42, 419-430.
  • 22. Gülensoy, H., 1984. Kompleksometrinin Esasları ve Kompleksometrik Titrasyonlar. Fatih Yayınevi, İstanbul, 259.
  • 23. Okamoto, Y., Fukino, K., Imanaka, T., Teranishi, S., 1983. Surface Characterization of CuO-ZnO Methanol-Synthesis Catalysts by X-Ray Photoelectron Spectroscopy. 1. Precursor and Calcined Catalysts. The Journal of Physical Chemistry, 87(19), 3740-3747.
  • 24. Oudenne, P.D., Olson, F.A., 1983. Leaching Kinetics of Malachite in Ammonium Carbonate Solutions. Metallurgical Transactions B., 14(1), 33-40.
  • 25. Venkatachalam, S., 1998. Hydrometallurgy. India Narosa Publishing House, London, 328.
  • 26. Vazquez-Arenas, J., Sosa-Rodriguez, F., Lazaro, I., Cruz, R., 2012. Thermodynamic and Electrochemistry Analysis of the Zinc Electrodeposition in NH4Cl-NH3 Electrolytes on Ti Glassy Carbon and 316L Stainless Steel. Electrochimica Acta, 79, 106-116.
  • 27. Asghar, A., Raman, A.A., Daud, W.M.A., 2014. A Comparison of Central Composite Design and Taguchi Method for Optimizing Fenton Process. The Scientific World Journal, 1-14.
  • 28. Shibata, Y., Hamada, R., Ueda, T., Ichihashi, Y., Nishiyama, S., Tsuruya, S., 2005. Gas-phase Catalytic Oxidation of Benzene to Phenol Over Cu-Impregnated HZSM-5 Catalysts. Industrial and Engineering Chemistry Research, 44(23), 8765-8772.
  • 29. Ascenzi, D., Franceschi, P., Guella, G., Tosi, P., 2006. Phenol Production in Benzene/Air Plasmas at Atmospheric Pressure. Role of Radical and Ionic Routes. The Journal of Physical Chemistry A, 110(25), 7841-7847.
  • 30. Schmidt, R.J.,2005. Industrial Catalytic Processes-Phenol Production. Applied Catalysis A: General, 280(1), 89-103.
  • 31. Huang, X., Ludenhoff, J.M., Dirks, M., Ouyang, X., Boot, M.D., Hensen, E.J.M., 2018. Selective Production of Biobased Phenol from Lignocellulose-Derived Alkylmethoxyphenols. ACS Catalysis, 8, 11184-11190
  • 32. Liptakova, B., Bahidsky, M., Hronec, M., 2004. Preparation of Phenol from Benzene by One-Step Reaction. Applied Catalysis A: General, 263(1), 33-38.
  • 33. Kanzaki, H., Kitamura, T., Hamada, R., Nishiyama, S., Tsuruya, S., 2004. Activities for Phenol Formation Using Cu Catalysts Supported on Al2O3 in The Liquid-Phase Oxidation of Benzene in Aqueous Solvent with High Acetic Acid Concentration. Journal of Molecular Catalysis A: Chemical, 208(1-2), 203-211.
  • 34. Kitamura, T., Kanzaki, H., Hamada, R., Nishiyama, S, Tsuruya, S., 2004. Liquid-phase Oxidation of Benzene to Phenol by Copper Catalysts in Aqueous Solvent with a High Acetic Acid Concentration. Canadian Journal of Chemistry, 82(11), 1597-1605.
  • 35. Tanarungsun, G., Kiatkittipong, W., Assabumrungrat, S., Yamada, H., Tagawa, T., Praserthdam, P., 2007. Multi Transition Metal Catalysts Supported on Tio2 for Hydoxylation of Benzene to Phenol with Hydrogen Peroxide. Journal of Industrial and Engineering Chemistry, 13(5), 870-877.
  • 36. Boz, İ., Altınçekiç, G.T., 2011. Liquid Phase Hydroxylation of Benzene to Phenol Over Cu/Zno Catalysts. Reaction Kinetic Mechanisms and Catalysis, 102(1), 195-205.
  • 37. Luo, G., Lv, X., Wang, X., Yan, S., Gao, X., Xu, J., Ma, H., Jiao, Y., Li, F., Chen, J., 2015. Direct Hydroxylation of Benzene to Phenol with Molecular Oxygen Over Vanadium Oxide Nanosphere and Mechanism Research. Royal Society of Chemistry Advances, 5(114), 94164-94170.

Determination of Optimum pH and NH3 Concentration of Malachite Ore for NH3/NH4NO3 Leaching by Response Surface Method to Produce Cu/Zn Oxide Binary Catalyst

Yıl 2023, Cilt: 38 Sayı: 2, 333 - 345, 28.07.2023
https://doi.org/10.21605/cukurovaumfd.1333949

Öz

In this work, a Cu/Zn oxide binary catalyst was produced by hydrometallurgical processing of copper ore containing a hydroxy-carbonate mineral malachite and a carbonate mineral smithsonite. The aim was to ascertain the pH and the solvent concentration that will lead to maximum copper and minimum zinc leaching ratios but prevent the dissolution of the other metals present in the ore. Optimum values of pH and solvent concentration were determined by the response surface method. Multiple regression analysis was applied to the experimental results and second order model equations, showing the relationship between the responses representing copper and zinc leaching ratios and independent variables, were obtained. NH3 concentration was found to be more effective on copper and zinc leaching than the pH. Optimum values for NH3 and NH4NO3 concentrations and pH were found to be 0.38 M, 0.11 M, and 9.80, respectively. Under optimum conditions, 82.3% of copper and 45.1% of zinc was leached from the malachite ore. Cu2+ and Zn2+ ions in the solution obtained as a result of leaching were precipitated with Na2CO3 solution and the solid product was calcined at 350 °C for 6 hours to produce a Cu/Zn oxide binary catalyst. The composition of the catalyst was approximately 44% copper oxide and 56% zinc oxide by weight.

Kaynakça

  • 1. Aslan, G., 2005. Metal Oksitler ile İyileştirilmiş Alkan Dehidrojenasyon İkili Katalizörlerinin Hazırlanması ve Tanımlanması. Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, 69.
  • 2. Baysar, A., 1985. In Situ FTIR Spectroscopy of Adsorbed Species on Mixed Metal Oxide Catalysts for Higher Alcohol Synthesis. M. Sc. Thesis, Iowa State University, Graduate Collage, Ames, Iowa, USA, 202.
  • 3. Mota, N., Guil-Lopez, R., Pawelec, B.G., Fierro, L.G., Navarro, R.M., 2018. Highly Active Cu/ZnO-Al Catalyst for Methanol Synthesis: Effect of Aging on its Structure and Activity. Royal Society of Chemistry Advances, 8(37), 20619-20629.
  • 4. Aydoğan, S., Aras, A., Canbazoğlu, M., 2005a. Dissolution Kinetics of Sphalerite in Acidic Ferric Chloride Leaching. Chemical Engineering Journal, 114(1-3), 67-72.
  • 5. Ekmekyapar, A., Aktaş, E., Künkül, A., Demirkıran, N., 2012. Investigation of Leaching Kinetics of Copper from Malachite Ore in Ammonium Nitrate Solutions. Metallurgical and Materials Transactions B., 43(4), 764-772.
  • 6. Habashi, F., 1997. Handbook of Extactive Metallurgy. Wiley Company, Weinheim, Germany, 1228.
  • 7. Long, X., Chen, Y., Chen, J., Xu, Z., Liu, Q., Du, Z., 2016. The Effect of Water Molecules on the Thiol Collector Interaction on the Galena (Pbs) and Sphalerite (Zns) Surfaces: A DFT study. Applied Surface Science, 389, 103-111.
  • 8. Faris, N., Ram, R., Chen, M., Tardio, J., Pownceby, M. I., Jones, L., McMaster, S., Webster, N.A.S, Bhargava, S., 2017. The Effect of Thermal Pre-Treatment on the Dissolution of Chalcopyrite (Cufes2) in Sulfuric Acid Media. Hydrometallurgy, 169, 68-78.
  • 9. Liu, H., Xia, J., Nie, Z, Liu, L., Wang, L, Ma, C., Zheng, L., Zhao, Y., Wen, W., 2017. Comparative study of S, Fe and Cu Speciation Transformation During Chalcopyrite Bioleaching by Mixed Mesophiles and Mixed Thermophiles. Minerals Engineering. 106, 22-32.
  • 10. Zhang, Y., Deng, J., Chen, J., Yu, R., Xing, X., 2013. Leaching of Zinc from Calcined Smithsonite Using Sodium Hydroxide. Hydrometallurgy, 131-132, 89-92.
  • 11. Ekmekyapar, A., Demirkıran, N., Künkül, A., Aktaş, E., 2015. Leaching of Malachite Ore in Ammonium Sulfate Solutions and Production of Copper Oxide. Brazilian Journal of Chemical Engineering, 32(1), 155-165.
  • 12. Tanaydın, M.K., Bakıcı Tanaydın, Z., Demirkıran, N., 2021. Determination of Optimum Process Conditions by Central Composite Design Method and Examination of Leaching Kinetics of Smithsonite Ore using Nitric Acid Solution. Journal of Sustainable Metallurgy, 7(1), 178-191.
  • 13. Bingöl, D., Canbazoğlu, M., 2004. Dissolution Kinetics of Malachite in Sulphuric Acid. Hydrometallurgy, 72(1-2), 159-165.
  • 14. Akkaş, C., 2011. Oksitli Bakır Cevherlerinden Bakır Kazanımı, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Metalurji ve Malzeme Mühendisliği Anabilim Dalı, İstanbul, 68.
  • 15. Ghosh, M.K., Anand, S., Das, R. P., 1989. Effect of Dissolved Impurities During Ammonia Leaching of Pure Zinc Sulphide. Hydrometallurgy, 22(1-2), 207-221.
  • 16. Künkül, A., Kocakerim, M., Yapıcı, S., Demirbağ, A., 1994. Leaching Kinetics of Malachite in Ammonia Solutions. International Journal of Mineral Processing, 41(3-4), 167-182.
  • 17. Künkül, A., Kocakerim, M., Yapıcı, S., Demirbağ, A., 1994. Leaching Kinetics of Malachite in Ammonia Solutions. International Journal of Mineral Processing, 41(3-4), 167-182.
  • 18. Ekmekyapar, A., Oya, R., Künkül, A., 2003. Dissolution Kinetics of Oxidized Copper Ore in Ammonium Chloride Solution. Chemical and Biochemical Engineering Quarterly, 17, 261-266.
  • 19. Aydoğan, S., Aras, A., Canbazoğlu, M., 2005b. Oxidation Ammonia Leaching of Sphalerite Concantrate. Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 20(2), 55-62.
  • 20. Bingöl, D., Canbazoğlu, M., Aydoğan, S., 2005. Disssolution Kinetics of Malachite in Ammonia/Ammonium Carbonate Leaching. Hydrometallurgy, 76(1-2), 55-62.
  • 21. Bates, R.G., Pinching, G.D., 1949. Acidic Dissociation Constant of Ammonium Ion at 0° to 50°C and the Base Strength of Ammonia. Journal of Research of the National Bureau of Standards, 42, 419-430.
  • 22. Gülensoy, H., 1984. Kompleksometrinin Esasları ve Kompleksometrik Titrasyonlar. Fatih Yayınevi, İstanbul, 259.
  • 23. Okamoto, Y., Fukino, K., Imanaka, T., Teranishi, S., 1983. Surface Characterization of CuO-ZnO Methanol-Synthesis Catalysts by X-Ray Photoelectron Spectroscopy. 1. Precursor and Calcined Catalysts. The Journal of Physical Chemistry, 87(19), 3740-3747.
  • 24. Oudenne, P.D., Olson, F.A., 1983. Leaching Kinetics of Malachite in Ammonium Carbonate Solutions. Metallurgical Transactions B., 14(1), 33-40.
  • 25. Venkatachalam, S., 1998. Hydrometallurgy. India Narosa Publishing House, London, 328.
  • 26. Vazquez-Arenas, J., Sosa-Rodriguez, F., Lazaro, I., Cruz, R., 2012. Thermodynamic and Electrochemistry Analysis of the Zinc Electrodeposition in NH4Cl-NH3 Electrolytes on Ti Glassy Carbon and 316L Stainless Steel. Electrochimica Acta, 79, 106-116.
  • 27. Asghar, A., Raman, A.A., Daud, W.M.A., 2014. A Comparison of Central Composite Design and Taguchi Method for Optimizing Fenton Process. The Scientific World Journal, 1-14.
  • 28. Shibata, Y., Hamada, R., Ueda, T., Ichihashi, Y., Nishiyama, S., Tsuruya, S., 2005. Gas-phase Catalytic Oxidation of Benzene to Phenol Over Cu-Impregnated HZSM-5 Catalysts. Industrial and Engineering Chemistry Research, 44(23), 8765-8772.
  • 29. Ascenzi, D., Franceschi, P., Guella, G., Tosi, P., 2006. Phenol Production in Benzene/Air Plasmas at Atmospheric Pressure. Role of Radical and Ionic Routes. The Journal of Physical Chemistry A, 110(25), 7841-7847.
  • 30. Schmidt, R.J.,2005. Industrial Catalytic Processes-Phenol Production. Applied Catalysis A: General, 280(1), 89-103.
  • 31. Huang, X., Ludenhoff, J.M., Dirks, M., Ouyang, X., Boot, M.D., Hensen, E.J.M., 2018. Selective Production of Biobased Phenol from Lignocellulose-Derived Alkylmethoxyphenols. ACS Catalysis, 8, 11184-11190
  • 32. Liptakova, B., Bahidsky, M., Hronec, M., 2004. Preparation of Phenol from Benzene by One-Step Reaction. Applied Catalysis A: General, 263(1), 33-38.
  • 33. Kanzaki, H., Kitamura, T., Hamada, R., Nishiyama, S., Tsuruya, S., 2004. Activities for Phenol Formation Using Cu Catalysts Supported on Al2O3 in The Liquid-Phase Oxidation of Benzene in Aqueous Solvent with High Acetic Acid Concentration. Journal of Molecular Catalysis A: Chemical, 208(1-2), 203-211.
  • 34. Kitamura, T., Kanzaki, H., Hamada, R., Nishiyama, S, Tsuruya, S., 2004. Liquid-phase Oxidation of Benzene to Phenol by Copper Catalysts in Aqueous Solvent with a High Acetic Acid Concentration. Canadian Journal of Chemistry, 82(11), 1597-1605.
  • 35. Tanarungsun, G., Kiatkittipong, W., Assabumrungrat, S., Yamada, H., Tagawa, T., Praserthdam, P., 2007. Multi Transition Metal Catalysts Supported on Tio2 for Hydoxylation of Benzene to Phenol with Hydrogen Peroxide. Journal of Industrial and Engineering Chemistry, 13(5), 870-877.
  • 36. Boz, İ., Altınçekiç, G.T., 2011. Liquid Phase Hydroxylation of Benzene to Phenol Over Cu/Zno Catalysts. Reaction Kinetic Mechanisms and Catalysis, 102(1), 195-205.
  • 37. Luo, G., Lv, X., Wang, X., Yan, S., Gao, X., Xu, J., Ma, H., Jiao, Y., Li, F., Chen, J., 2015. Direct Hydroxylation of Benzene to Phenol with Molecular Oxygen Over Vanadium Oxide Nanosphere and Mechanism Research. Royal Society of Chemistry Advances, 5(114), 94164-94170.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği, Kimya Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Zümra Bakırcı Karacahan Bu kişi benim 0000-0003-0376-0956

Nizamettin Demirkıran Bu kişi benim 0000-0001-9021-2477

Ahmet Baysar Bu kişi benim 0000-0002-7017-399X

Yayımlanma Tarihi 28 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 2

Kaynak Göster

APA Bakırcı Karacahan, Z., Demirkıran, N., & Baysar, A. (2023). Cu/Zn Oksit İkili Katalizörü Üretmek Amacıyla Malahit Cevherinin NH3/NH4NO3 Liçinde Optimum pH ve NH3 Derişiminin Yanıt Yüzey Yöntemiyle Belirlenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(2), 333-345. https://doi.org/10.21605/cukurovaumfd.1333949