Araştırma Makalesi
BibTex RIS Kaynak Göster

Vortex Suppression Downstream of a Cylinder via Guide Wanes

Yıl 2023, Cilt: 38 Sayı: 3, 593 - 601, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377170

Öz

It is experimentally investigated that vortex suppression of the circular cylinder in the wake region by guide wanes. Three distinct gap ratios (G/D=0.1, 0.3, and 0.5) and plate angle values in the range of 60°–90° were examined for the guide wanes, which were fabricated in arc form. Flow structures of the cylinder in the wake region were obtained by PIV measurement at Reynolds number of Re=7500. The obtained results such as Reynolds shear stress, velocity components, vortex contours, and vortex shedding frequency are explained in comparison with the bare cylinder. It was observed that low plate angle values are more effective on the vortex shedding frequencies, and higher plate angle values are more effective on vortex suppression. It was observed that the gap ratio of G/D=0.1 is more effective on suppression of Reynolds shear stresses when compared to the other gap ratios.

Kaynakça

  • 1. Dong, S., Triantafyllou, G.S., Karniadakis, G.E., 2008. Elimination of Vortex Streets in Bluff-Body Flows. Physical Review Letters, 100(20), 204501.
  • 2. Feng, L.H., Wang, J.J., 2010. Circular Cylinder Vortex-Synchronization Control with a Synthetic Jet Positioned at the Rear Stagnation Point. Journal of Fluid Mechanics, 662, 232-259.
  • 3. Corke, T.C., Enloe, C.L., Wilkinson, S.P., 2010. Dielectric Barrier Discharge Plasma Actuators for Flow Control. Annual Review of Fluid Mechanics, 42(1), 505-529.
  • 4. Chan, A.S., Dewey, P.A., Jameson, A., Liang, C., Smits, A.J., 2011. Vortex Suppression and Drag Reduction in the Wake of Counter-Rotating Cylinders. Journal of Fluid Mechanics, 679, 343-382.
  • 5. Lecordier, J.C., Hamma, L., Paranthoen, P., 1991. The Control of Vortex Shedding Behind Heated Circular Cylinders at Low Reynolds Numbers. Experiments in Fluids, 10, 224-229.
  • 6. Posdziech, O., Grundmann, R., 2001. Electromagnetic Control of Seawater Flow Around Circular Cylinders. European Journal of Mechanics - B/Fluids, 20, 255-274.
  • 7. Kwon, K., Choi, H., 1996. Control of Laminar Vortex Shedding Behind a Circular Cylinder Using Splitter Plates. Physics of Fluids, 8(2), 479-486.
  • 8. Hwang, J.Y., Yang, K.S., Sun, S.H., 2003. Reduction of Flow-Induced Forces on a Circular Cylinder Using a Detached Splitter Plate. Physics of Fluids, 15(8), 2433-2436.
  • 9. Akıllı, H., Şahin B., Filiz Tümen, N., 2005. Suppression of Vortex Shedding of Circular Cylinder in Shallow Water by a Splitter Plate. Flow Measurement and Instrumentation, 16(4), 211-219.
  • 10. Zhu, H., Liu, W., 2020. Flow Control and Vibration Response of a Circular Cylinder Attached with a Wavy Plate. Ocean Engineering, 212.
  • 11. Özkan, G.M., Fırat, E., Akıllı, H., 2017. Passive Flow Control in the Near Wake of a Circular Cylinder Using Attached Permeable and Inclined Short Plates. Ocean Engineering, 134, 35-49.
  • 12. Şahin, S., Durhasan, T., Pınar, E., Akıllı, H., 2021. Experimental Study on Passive Flow Control of Circular Cylinder via Perforated Splitter Plate. Wind and Structures, 32(6), 613-621.
  • 13. Gao, D.L., Chen, W.L., Li, H., Hu, H., 2017. Flow Around a Circular Cylinder with Slit. Experimental Thermal and Fluid Science, 82, 287-301.
  • 14. Trim, A.D., Braaten, H., Lie, H., Tognarelli, M.A., 2005. Experimental Investigation of Vortex-Induced Vibration of Long Marine Risers. Journal of Fluids and Structures, 21(3), 335-361.
  • 15. Zhou, B., Wang, X., Guo, W., Zheng, J., Tan, S.K., 2015. Experimental Measurements of the Drag Force and the Near-Wake Flow Patterns of a Longitudinally Grooved Cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 145, 30-41.
  • 16. Fırat, E., Özkan, G.M., Akıllı, H., 2017. PIV Measurements in the Near Wakes of Hollow Cylinders with Holes. Experiments in Fluids, 58(5).
  • 17. Durhasan, T., Pınar, E., Özkan, G.M., Akıllı, H., Şahin, B., 2019. The Effect of Shroud on Vortex Shedding Mechanism of Cylinder. Applied Ocean Research, 84, 51-61.
  • 18. Lee, S.J., Lee, S.I., Park, C.W., 2004. Reducing the Drag on a Circular Cylinder by Upstream Installation of a Small Control Rod. Fluid Dynamics Research, 34(4), 233-250.

Silindir Art İzindeki Daimi Olmayan Girdapların Kılavuz Plakalar Yardımı ile Bastırılması

Yıl 2023, Cilt: 38 Sayı: 3, 593 - 601, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377170

Öz

Dairesel kesitli silindirin art izindeki daimi olmayan girdapların kılavuz plakalar kullanılarak bastırılması deneysel olarak araştırılmıştır. Kılavuz plakalar yay şeklinde imal edilmiş ve üç farklı açıklık oranı (G/D=0,1, 0,3 ve 0,5) ve plaka açı değerleri 60°≤α≤90° aralığında incelenmiştir. Silindir art izindeki akış yapıları PIV ölçümü ile Reynolds sayısının 7500 değerinde elde edilmiştir. Akış ölçümünden elde edilen Reynolds kayma gerilmeleri, girdap konturları, hız bileşenleri ve girdap kopması frekans sonuçları ile yalın silindir durumu ile kıyaslanarak açıklanmıştır. Düşük plaka açı değerlerinde girdap kopma frekansları üzerinde daha etkin olduğu yüksek plaka açı değerlerinin ise girdap sönümlemede daha etkin olduğu gözlemlenmiştir. Reynolds kayma gerilmelerinin bastırılmasında açılık oranı G/D=0,1’in diğer açıklık oranları ile kıyaslandığında daha etkili olduğu gözlemlenmiştir.

Kaynakça

  • 1. Dong, S., Triantafyllou, G.S., Karniadakis, G.E., 2008. Elimination of Vortex Streets in Bluff-Body Flows. Physical Review Letters, 100(20), 204501.
  • 2. Feng, L.H., Wang, J.J., 2010. Circular Cylinder Vortex-Synchronization Control with a Synthetic Jet Positioned at the Rear Stagnation Point. Journal of Fluid Mechanics, 662, 232-259.
  • 3. Corke, T.C., Enloe, C.L., Wilkinson, S.P., 2010. Dielectric Barrier Discharge Plasma Actuators for Flow Control. Annual Review of Fluid Mechanics, 42(1), 505-529.
  • 4. Chan, A.S., Dewey, P.A., Jameson, A., Liang, C., Smits, A.J., 2011. Vortex Suppression and Drag Reduction in the Wake of Counter-Rotating Cylinders. Journal of Fluid Mechanics, 679, 343-382.
  • 5. Lecordier, J.C., Hamma, L., Paranthoen, P., 1991. The Control of Vortex Shedding Behind Heated Circular Cylinders at Low Reynolds Numbers. Experiments in Fluids, 10, 224-229.
  • 6. Posdziech, O., Grundmann, R., 2001. Electromagnetic Control of Seawater Flow Around Circular Cylinders. European Journal of Mechanics - B/Fluids, 20, 255-274.
  • 7. Kwon, K., Choi, H., 1996. Control of Laminar Vortex Shedding Behind a Circular Cylinder Using Splitter Plates. Physics of Fluids, 8(2), 479-486.
  • 8. Hwang, J.Y., Yang, K.S., Sun, S.H., 2003. Reduction of Flow-Induced Forces on a Circular Cylinder Using a Detached Splitter Plate. Physics of Fluids, 15(8), 2433-2436.
  • 9. Akıllı, H., Şahin B., Filiz Tümen, N., 2005. Suppression of Vortex Shedding of Circular Cylinder in Shallow Water by a Splitter Plate. Flow Measurement and Instrumentation, 16(4), 211-219.
  • 10. Zhu, H., Liu, W., 2020. Flow Control and Vibration Response of a Circular Cylinder Attached with a Wavy Plate. Ocean Engineering, 212.
  • 11. Özkan, G.M., Fırat, E., Akıllı, H., 2017. Passive Flow Control in the Near Wake of a Circular Cylinder Using Attached Permeable and Inclined Short Plates. Ocean Engineering, 134, 35-49.
  • 12. Şahin, S., Durhasan, T., Pınar, E., Akıllı, H., 2021. Experimental Study on Passive Flow Control of Circular Cylinder via Perforated Splitter Plate. Wind and Structures, 32(6), 613-621.
  • 13. Gao, D.L., Chen, W.L., Li, H., Hu, H., 2017. Flow Around a Circular Cylinder with Slit. Experimental Thermal and Fluid Science, 82, 287-301.
  • 14. Trim, A.D., Braaten, H., Lie, H., Tognarelli, M.A., 2005. Experimental Investigation of Vortex-Induced Vibration of Long Marine Risers. Journal of Fluids and Structures, 21(3), 335-361.
  • 15. Zhou, B., Wang, X., Guo, W., Zheng, J., Tan, S.K., 2015. Experimental Measurements of the Drag Force and the Near-Wake Flow Patterns of a Longitudinally Grooved Cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 145, 30-41.
  • 16. Fırat, E., Özkan, G.M., Akıllı, H., 2017. PIV Measurements in the Near Wakes of Hollow Cylinders with Holes. Experiments in Fluids, 58(5).
  • 17. Durhasan, T., Pınar, E., Özkan, G.M., Akıllı, H., Şahin, B., 2019. The Effect of Shroud on Vortex Shedding Mechanism of Cylinder. Applied Ocean Research, 84, 51-61.
  • 18. Lee, S.J., Lee, S.I., Park, C.W., 2004. Reducing the Drag on a Circular Cylinder by Upstream Installation of a Small Control Rod. Fluid Dynamics Research, 34(4), 233-250.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Temel ve Teorik Akışkanlar Dinamiği, Enerji, Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Fırat Ekinci 0000-0002-4888-7881

Tahir Durhasan 0000-0001-5212-9170

Hüseyin Akıllı 0000-0002-5342-7046

Yayımlanma Tarihi 18 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 3

Kaynak Göster

APA Ekinci, F., Durhasan, T., & Akıllı, H. (2023). Silindir Art İzindeki Daimi Olmayan Girdapların Kılavuz Plakalar Yardımı ile Bastırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(3), 593-601. https://doi.org/10.21605/cukurovaumfd.1377170