Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Crash Performance of Multi-Cell Crash-Boxes

Yıl 2023, Cilt: 38 Sayı: 3, 613 - 621, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377191

Öz

Highway transportation is the most used type of transportation and logistics way of the 20th century. Today, the increasing need for transportation and logistics has caused a great interest in the number of vehicles in traffic. In this direction, automotive manufacturers continue their efforts to develop new designs and production methods in order to make vehicles safer, reduce the damage they cause to the environment, and increase their comfort. This article examines crash boxes within the scope of vehicle security systems. Multi-cell crash boxes, which are innovative crash box designs, are investigated for the effects of the cross-sectional area on energy dissipation performance. Within the scope of the study, four groups of crash boxes with circular, square, hexagonal, and octagonal outer sections with different inner and outer wall variations were designed. Then, the crash performances of the designed crash boxes were determined. As a result of the studies, the developed O6 model is the best crash performance as developed 23 model. The specific energy absorption(SEA) and energy absorpstion (EA)of the O6 model are 20.37 kJ/kg and 9.98 kj respectively. The results of the O6 are the best value compared with the other 23 designs developed in this research.

Kaynakça

  • 1. Ahmad, Z., Thambiratnam, D.P., 2009. Dynamic Computer Simulation and Energy Absorption of Foam-Filled Conical Tubes Under Axial Impact Loading. Computers and Structures, 87(3-4), 186-197.
  • 2. Mahdi Abedi, M., Niknejad, A., Hossein Liaghat, G., Zamani Nejad, M., 2012. Theoretical and Experimental Study on Empty and Foam-Filled Columns with Square and Rectangular Cross Section Under Axial Compression. International Journal of Mechanical Sciences, 65(1), 134-146.
  • 3. Meran, A.P., 2016. Solidity Effect on Crashworthiness Characteristics of Thin-Walled Tubes Having Various Cross-Sectional Shapes. International Journal of Crashworthiness, 21(2), 135-147.
  • 4. Eyvazian, A., Eltai, E., Musharavati, F., Taghipoor, H., Sebaey, T.A., Talebizadehsardari, P., 2020. Experimental and Numerical Investigations on Axial Crushing of Square Cross-Sections Tube with Vertical Wave. Steel and Composite Structures, 36(2), 119-141.
  • 5. Taghipoor, H., Eyvazian, A., Ghiaskar, A., Praveen Kumar, A., Hamouda, A. M., Gobbi, M., 2020. Experimental Investigation of the Thin-Walled Energy Absorbers with Different Sections Including Surface Imperfections Under Low-Speed Impact Test. Materials Today: Proceedings, 27(2), 1498-1504.
  • 6. Alavi Nia, A., Parsapour, M., 2014. Comparative Analysis of Energy Absorption Capacity of Simple and Multi-Cell Thin-Walled Tubes with Triangular, Square, Hexagonal and Octagonal Sections. Thin-Walled Structures, 74, 155-165.
  • 7. Vimal Kannan, I., Rajkumar, R., 2020. Crashworthiness and Comparative Analysis of Polygonal Single and Bi-Tubular Structures Under Axial Loading-Experiments and FE Modelling. Journal of Theoretical and Applied Mechanics, 81-94.
  • 8. Xu, X., Zhang, Y., Wang, J., Jiang, F., Wang, C. H., 2018. Crashworthiness Design of Novel Hierarchical Hexagonal Columns. Composite Structures, 194(March), 36-48.
  • 9. Chen, W., Wierzbicki, T., 2001. Relative Merits of Single-Cell, Multi-Cell and Foam-Filled Thin-Walled Structures in Energy Absorption. Thin-Walled Structures, 39(4), 287-306.
  • 10. El-Hage, H., Mallick, P. K., Zamani, N., 2005. A Numerical Study on the Quasi-Static Axial Crush Characteristics of Square Aluminum Tubes with Chamfering and Other Triggering Mechanisms. International Journal of Crashworthiness, 10(2), 183-196.
  • 11. Alkhatib, S.E., Tarlochan, F., Hashem, A., Sassi, S., 2018. Collapse Behavior of Thin-Walled Corrugated Tapered Tubes Under Oblique Impact. Thin-Walled Structures, 122, 510-528.
  • 12. Arnold, B., Altenhof, W., 2004. Experimental Observations on the Crush Characteristics of AA6061 T4 and T6 Structural Square Tubes with and Without Circular Discontinuities. International Journal of Crashworthiness, 9(1), 73-87.
  • 13. Bodlani, S.B., Yuen, S.C.K., Nurick, G.N., 2009. The Energy Absorption Characteristics of Square Mild Steel Tubes with Multiple Induced Circular Hole Discontinuities-Part I: Experiments. Journal of Applied Mechanics, 76(1), 1-11.
  • 14. Bodlani, S.B., Yuen, S.C.K., Nurick, G.N., 2014. The Energy Absorption Characteristics of Square Mild Steel Tubes with Multiple Induced Circular Hole Discontinuities-Part II. Journal of Applied Mechanics, 76, 1-10.
  • 15. Marzbanrad, J., Abdollahpoor, A., Mashadi, B., 2009. Effects of the Triggering of Circular Aluminium Tubes on Crashworthiness. International Journal of Crashworthiness, 14(6), 591-599.
  • 16. Yamashita, M., Gotoh, M., Sawairi, Y., 2003. Axial Crush of Hollow Cylindrical Structures with Various Polygonal Cross-Sections: Numerical Simulation and Experiment, Journal of Materials Processing Technology, 140(1-3 SPEC.), 59-64.
  • 17. Yang, K., Xu, S., Zhou, S., Xie, Y.M., 2018. Multi-Objective Optimization of Multi-Cell Tubes with Origami Patterns for Energy Absorption. Thin-Walled Structures, 123, 100-113.
  • 18. Bigdeli, A., Nouri, M.D., 2019. A Crushing Analysis and Multi-Objective Optimization of Thin-Walled Five-Cell Structures. Thin-Walled Structures, 137, 1-18.
  • 19. Albak, E.I., 2020. Multi-Objective Crashworthiness Optimization of Thin-Walled Multi-Cell Tubes with Different Wall Lengths, International Journal of Crashworthiness, 8265.
  • 20. Li, Z., Ma, W., Yao, S., Xu, P., 2021. Crashworthiness Performance of Corrugation- Reinforced Multicell Tubular Structures, International Journal of Mechanical Sciences, 190, 106038.
  • 21. Ma, W., Li, Z., Xie, S., 2020. Crashworthiness Analysis of Thin-Walled Bio-Inspired Multi-Cell Corrugated Tubes Under Quasi-Static Axial Loading, Engineering Structures, 204, 110069.
  • 22. Kim, H.S., 2002. New Extruded Multi-Cell Aluminium Profile for Maximum Crash Energy Absorption and Weight Efficiency. Thin-Walled Structures, 40(4), 311-327.
  • 23. Sun, G., Liu, T., Huang, X., Zhen, G., Li, Q., 2018. Topological Configuration Analysis and Design for Foam Filled Multi-Cell Tubes. Engineering Structures, 155, 235-250.
  • 24. Gao, Q., Wang, L., Wang, Y., Wang, C., 2016. Thin-Walled Structures Crushing Analysis and Multiobjective Crashworthiness Optimization of Foam-Filled Ellipse Tubes Under Oblique Impact Loading. Thin Walled Structures, 100, 105-112.
  • 25. Albak, E.İ., 2021. Crashworthiness Design for Multi-Cell Circumferentially Corrugated Thin-Walled Tubes with Sub-Sections Under Multiple Loading Conditions. Thin-Walled Structures, 164, 107886.
  • 26. Tancogne-Dejean, T., Spierings, A.B., Mohr, D., 2016. Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption Under Static and Dynamic Loading. Acta Materialia, 116, 14-28.
  • 27. Song, J., Chen, Y., Lu, G., 2012. Axial Crushing of Thin-Walled Structures with Origami Patterns, Thin-Walled Structures, 54, 65-71.
  • 28. Li, Z., Ma, W., Xu, P., Yao, S., 2019. Crushing Behavior of Circumferentially Corrugated Square Tube with Different Cross Inner Ribs. Thin-Walled Structures, 144, 106370.
  • 29. Wu, S., Zheng, G., Sun, G., Liu, Q., Li, G., Li, Q., 2016. On Design of Multi-Cell Thin-Wall Structures for Crashworthiness. International Journal of Impact Engineering, 88, 102-117.

Çok Hücreli Çarpışma Kutularının Çarpışma Performansının İncelenmesi

Yıl 2023, Cilt: 38 Sayı: 3, 613 - 621, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377191

Öz

Karayolu taşımacılığı 20. yüzyılın en çok kullanılan ulaşım ve lojistik yoludur. Günümüzde artan ulaşım ve lojistik ihtiyacı, trafikteki araç sayısında büyük bir artışa neden olmuştur. Bu doğrultuda otomotiv üreticileri, araçları daha güvenli hale getirmek, çevreye verdikleri zararı azaltmak ve konforlarını artırmak amacıyla yeni tasarım ve üretim yöntemleri geliştirmek için çalışmalarını sürdürmektedir. Bu makalede araç güvenlik sistemleri kapsamında yer alan çarpışma kutuları incelenmiştir. Yenilikçi çarpışma kutusu tasarımları olan çok hücreli çarpışma kutuları, kesit alanının enerji yayılım performansı üzerindeki etkileri açısından incelenmiştir. Çalışma kapsamında, farklı iç ve dış duvar varyasyonları ile dairesel, kare, altıgen ve sekizgen dış kesitli dört grup çarpışma kutusu tasarlanmıştır. Daha sonra tasarlanan çarpışma kutularının çarpışma performansları belirlenmiştir. Yapılan çalışmalar sonunda geliştirilen 24 farklı çarpışma kutusundan en iyi çarpışma performansına sahip yeni bir çok hücreli çarpışma kutusu geliştirilmiştir. Yapılan çalışmalar sonucunda O6 modelinin 20.37 kJ/kg ile diğer 23 tasarımdan daha iyi spesifik enerji sönümleme değerine sahip olduğunu ortaya koymuştur.

Kaynakça

  • 1. Ahmad, Z., Thambiratnam, D.P., 2009. Dynamic Computer Simulation and Energy Absorption of Foam-Filled Conical Tubes Under Axial Impact Loading. Computers and Structures, 87(3-4), 186-197.
  • 2. Mahdi Abedi, M., Niknejad, A., Hossein Liaghat, G., Zamani Nejad, M., 2012. Theoretical and Experimental Study on Empty and Foam-Filled Columns with Square and Rectangular Cross Section Under Axial Compression. International Journal of Mechanical Sciences, 65(1), 134-146.
  • 3. Meran, A.P., 2016. Solidity Effect on Crashworthiness Characteristics of Thin-Walled Tubes Having Various Cross-Sectional Shapes. International Journal of Crashworthiness, 21(2), 135-147.
  • 4. Eyvazian, A., Eltai, E., Musharavati, F., Taghipoor, H., Sebaey, T.A., Talebizadehsardari, P., 2020. Experimental and Numerical Investigations on Axial Crushing of Square Cross-Sections Tube with Vertical Wave. Steel and Composite Structures, 36(2), 119-141.
  • 5. Taghipoor, H., Eyvazian, A., Ghiaskar, A., Praveen Kumar, A., Hamouda, A. M., Gobbi, M., 2020. Experimental Investigation of the Thin-Walled Energy Absorbers with Different Sections Including Surface Imperfections Under Low-Speed Impact Test. Materials Today: Proceedings, 27(2), 1498-1504.
  • 6. Alavi Nia, A., Parsapour, M., 2014. Comparative Analysis of Energy Absorption Capacity of Simple and Multi-Cell Thin-Walled Tubes with Triangular, Square, Hexagonal and Octagonal Sections. Thin-Walled Structures, 74, 155-165.
  • 7. Vimal Kannan, I., Rajkumar, R., 2020. Crashworthiness and Comparative Analysis of Polygonal Single and Bi-Tubular Structures Under Axial Loading-Experiments and FE Modelling. Journal of Theoretical and Applied Mechanics, 81-94.
  • 8. Xu, X., Zhang, Y., Wang, J., Jiang, F., Wang, C. H., 2018. Crashworthiness Design of Novel Hierarchical Hexagonal Columns. Composite Structures, 194(March), 36-48.
  • 9. Chen, W., Wierzbicki, T., 2001. Relative Merits of Single-Cell, Multi-Cell and Foam-Filled Thin-Walled Structures in Energy Absorption. Thin-Walled Structures, 39(4), 287-306.
  • 10. El-Hage, H., Mallick, P. K., Zamani, N., 2005. A Numerical Study on the Quasi-Static Axial Crush Characteristics of Square Aluminum Tubes with Chamfering and Other Triggering Mechanisms. International Journal of Crashworthiness, 10(2), 183-196.
  • 11. Alkhatib, S.E., Tarlochan, F., Hashem, A., Sassi, S., 2018. Collapse Behavior of Thin-Walled Corrugated Tapered Tubes Under Oblique Impact. Thin-Walled Structures, 122, 510-528.
  • 12. Arnold, B., Altenhof, W., 2004. Experimental Observations on the Crush Characteristics of AA6061 T4 and T6 Structural Square Tubes with and Without Circular Discontinuities. International Journal of Crashworthiness, 9(1), 73-87.
  • 13. Bodlani, S.B., Yuen, S.C.K., Nurick, G.N., 2009. The Energy Absorption Characteristics of Square Mild Steel Tubes with Multiple Induced Circular Hole Discontinuities-Part I: Experiments. Journal of Applied Mechanics, 76(1), 1-11.
  • 14. Bodlani, S.B., Yuen, S.C.K., Nurick, G.N., 2014. The Energy Absorption Characteristics of Square Mild Steel Tubes with Multiple Induced Circular Hole Discontinuities-Part II. Journal of Applied Mechanics, 76, 1-10.
  • 15. Marzbanrad, J., Abdollahpoor, A., Mashadi, B., 2009. Effects of the Triggering of Circular Aluminium Tubes on Crashworthiness. International Journal of Crashworthiness, 14(6), 591-599.
  • 16. Yamashita, M., Gotoh, M., Sawairi, Y., 2003. Axial Crush of Hollow Cylindrical Structures with Various Polygonal Cross-Sections: Numerical Simulation and Experiment, Journal of Materials Processing Technology, 140(1-3 SPEC.), 59-64.
  • 17. Yang, K., Xu, S., Zhou, S., Xie, Y.M., 2018. Multi-Objective Optimization of Multi-Cell Tubes with Origami Patterns for Energy Absorption. Thin-Walled Structures, 123, 100-113.
  • 18. Bigdeli, A., Nouri, M.D., 2019. A Crushing Analysis and Multi-Objective Optimization of Thin-Walled Five-Cell Structures. Thin-Walled Structures, 137, 1-18.
  • 19. Albak, E.I., 2020. Multi-Objective Crashworthiness Optimization of Thin-Walled Multi-Cell Tubes with Different Wall Lengths, International Journal of Crashworthiness, 8265.
  • 20. Li, Z., Ma, W., Yao, S., Xu, P., 2021. Crashworthiness Performance of Corrugation- Reinforced Multicell Tubular Structures, International Journal of Mechanical Sciences, 190, 106038.
  • 21. Ma, W., Li, Z., Xie, S., 2020. Crashworthiness Analysis of Thin-Walled Bio-Inspired Multi-Cell Corrugated Tubes Under Quasi-Static Axial Loading, Engineering Structures, 204, 110069.
  • 22. Kim, H.S., 2002. New Extruded Multi-Cell Aluminium Profile for Maximum Crash Energy Absorption and Weight Efficiency. Thin-Walled Structures, 40(4), 311-327.
  • 23. Sun, G., Liu, T., Huang, X., Zhen, G., Li, Q., 2018. Topological Configuration Analysis and Design for Foam Filled Multi-Cell Tubes. Engineering Structures, 155, 235-250.
  • 24. Gao, Q., Wang, L., Wang, Y., Wang, C., 2016. Thin-Walled Structures Crushing Analysis and Multiobjective Crashworthiness Optimization of Foam-Filled Ellipse Tubes Under Oblique Impact Loading. Thin Walled Structures, 100, 105-112.
  • 25. Albak, E.İ., 2021. Crashworthiness Design for Multi-Cell Circumferentially Corrugated Thin-Walled Tubes with Sub-Sections Under Multiple Loading Conditions. Thin-Walled Structures, 164, 107886.
  • 26. Tancogne-Dejean, T., Spierings, A.B., Mohr, D., 2016. Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption Under Static and Dynamic Loading. Acta Materialia, 116, 14-28.
  • 27. Song, J., Chen, Y., Lu, G., 2012. Axial Crushing of Thin-Walled Structures with Origami Patterns, Thin-Walled Structures, 54, 65-71.
  • 28. Li, Z., Ma, W., Xu, P., Yao, S., 2019. Crushing Behavior of Circumferentially Corrugated Square Tube with Different Cross Inner Ribs. Thin-Walled Structures, 144, 106370.
  • 29. Wu, S., Zheng, G., Sun, G., Liu, Q., Li, G., Li, Q., 2016. On Design of Multi-Cell Thin-Wall Structures for Crashworthiness. International Journal of Impact Engineering, 88, 102-117.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Otomotiv Güvenlik Mühendisliği, Otomotiv Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Mustafa Ceyhan 0000-0001-5215-0383

Betul Yildiz 0000-0002-7493-2068

Yayımlanma Tarihi 18 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 3

Kaynak Göster

APA Ceyhan, M., & Yildiz, B. (2023). Investigation of Crash Performance of Multi-Cell Crash-Boxes. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(3), 613-621. https://doi.org/10.21605/cukurovaumfd.1377191