Research Article
BibTex RIS Cite

Skin Cancer Recognition Using Compact Deep Convolutional Neural Network

Year 2023, Volume: 38 Issue: 3, 787 - 797, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377752

Abstract

Skin cancer is a common form of cancer that affects millions of people worldwide. Early detection and accurate diagnosis of skin cancer are crucial for effective treatment and management of the disease. There has been a growing interest in using deep learning techniques and computer vision algorithms to develop automated skin cancer detection systems in recent years. Among these techniques, convolutional neural networks (CNN) have shown remarkable performance in detecting and classifying skin lesions. This paper presents a comprehensive study using CNN and deep learning techniques for skin cancer detection using the International Skin Imaging Collaboration (ISIC) dataset. The proposed architecture is a compact deep CNN that is trained using a dataset of benign and malignant skin lesion images. The proposed architecture has achieved 84.8% accuracy, 83.8% TPR, 83.7% TNR, 81.6% F1-score and 80.5% precision for performance evaluation. The experimental results show promising results for the accurate and efficient detection of skin cancer, which has the potential to improve the diagnosis and treatment of this life-threatening disease.

References

  • 1. Dorj, U., Lee, K., Choi, J., Lee, M., 2018. The Skin Cancer Classification using Deep Convolutional Neural Network, Multimedia. Tools Appl. 77, 9909-9924.
  • 2. Naqvi, M., Syed, Q.G., Tehreem, S., Oge, M., Hee-Cheol, K., 2023. Skin Cancer Detection Using Deep Learning-A Review. Diagnostics 13(11), 1911.
  • 3. Zhang, N., Cai, Y.X., Wang, Y.Y., Tian, Y.T., Wang, X.L., Badami, B., 2020. Skin Cancer Diagnosis Based on Optimized Convolutional Neural Network. Artificial Intelligence in Medicine, 102, 101756.
  • 4. Arevalo, J., Cruz-Roa, A., Arias, V., Romero, E., González, F.A., 2015. An Unsupervised Feature Learning Framework for Basal Cell Carcinoma Image Analysis. Artificial Intelligence in Medicine, 64(2), 131-145.
  • 5. Malibari, A.A., Alzahrani, J.S., Eltahir, M.M., Malik, V., Obayya, M., Al Duhayyim, M., Albuquerque, V.H.C., 2022. Optimal Deep Neural Network-Driven Computer-Aided Diagnosis Model for Skin Cancer. Computers and Electrical Engineering, 103, 108318.
  • 6. Rashid, J., Ishfaq, M., Ali, G., Saeed, M.R., Hussain, M., Alkhalifah, T., Samand, N., 2022. Skin Cancer Disease Detection using Transfer Learning Technique. Applied Sciences, 12(11), 5714.
  • 7. Maniraj, S.P., Maran, P.S., 2022. A Hybrid Deep Learning Approach for Skin Cancer Diagnosis Using Subband Fusion of 3D Wavelets. The Journal of Supercomputing, 78(10), 12394-12409.
  • 8. Global Cancer Facts and Figures, American Cancer Society, https://www.cancer.org/ resear ch/cancer-facts-statistics/global.html, Access date: 15.12.2022.
  • 9. Naik, P.P., 2021. Cutaneous Malignant Melanoma: A Review of Early Diagnosis and Management. World Journal of Oncology, 12(1), 7.
  • 10. Manne, R., Kantheti, S., Kantheti, S., 2020. Classification of Skin Cancer Using Deep Learning, Convolutional Neural Networks-Opportunities and Vulnerabilities-A Systematic Review. International Journal for Modern Trends in Science and Technology, 6, 2455-3778.
  • 11. Holman, C.D.J., Armstrong, B.K., Evans, P.R., Lumsden, G.J., Dallimore, K.J., Meehan, C.J., Gibson, I.M., 1984. Relationship of Solar Keratosis and History of Skin Cancer to Objective Measures of Actinic Skin Damage. British Journal of Dermatology, 110(2), 129-138.
  • 12. Kareem, O.S., Abdulazee, A.M., Zeebaree, D.Q., 2021. Skin Lesions Classification using Deep Learning Techniques. Asian Journal of Research in Computer Science, 9(1), 1-22.
  • 13. Saba, T., 2021. Computer Vision for Microscopic Skin Cancer Diagnosis using Handcrafted and Non‐Handcrafted Features. Microscopy Research and Technique, 84(6), 1272-1283.
  • 14. Mridha, K., Uddin, M.M., Shin, J., Khadka, S., Mridha, M.F., 2023. An Interpretable Skin Cancer Classification using Optimized Convolutional Neural Network for A Smart Healthcare System. IEEE Access.
  • 15. Skin Cancer Facts and Statistics - The Skin Cancer Foundation. https://www.skincancer.org /skin-cancer-information/skin-cancer-facts/, Access date: 15.01.2023.
  • 16. Shah, A., Shah, M., Pandya, A., Sushra, R., Sushra, R., Mehta, M., Patel, K., 2023. A Comprehensive Study on Skin Cancer Detection Using Artificial Neural Network (ANN) and Convolutional Neural Network (CNN). Clinical Ehealth.
  • 17. Cao, W., Feng, Z., Zhang, D., Huang, Y., 2020. Facial Expression Recognition Via A CBAM Embedded Network. Procedia Computer Science, 174, 463-477.
  • 18. Deshmukh, S., Rathod, A., Sonawane, H., Raut, R., Devkar, A., 2023. Skin Cancer Classification Using CNN. In 2023 International Conference On Applied Intelligence and Sustainable Computing (ICAISC), 1-5.
  • 19. Qasim Gilani, S., Syed, T., Umair, M., Marques, O., 2023. Skin Cancer Classification using Deep Spiking Neural Network. Journal of Digital Imaging, 1-11.
  • 20. Yadav, S.S., Jadhav, S.M., 2019. Deep Convolutional Neural Network-Based Medical Image Classification for Disease Diagnosis. Journal of Big Data, 6(1), 1-18.
  • 21. Cassidy, B., Kendrick, C., Brodzicki, A., Jaworek-Korjakowska, J., Yap, M.H., 2022. Analysis of the ISIC Image Datasets: Usage, Benchmarks and Recommendations. Medical Image Analysis, 75, 102305.
  • 22. Yanagisawa, H., Yamashita, T., Watanabe, H., 2018. A Study on Object Detection Method from Manga Images using CNN. In 2018 International Workshop on Advanced Image Technology, 1-4.
  • 23. Kannojia, S.P., Jaiswal, G., 2018. Ensemble of Hybrid CNN-ELM Model for Image Classification. In 2018 5th International Conference on Signal Processing and Integrated Networks, 538-541.
  • 24. Khan, M.A., Akram, T., Zhang, Y.D., Sharif, M., 2021. Attributes-Based Skin Lesion Detection and Recognition: A Mask RCNN and Transfer Learning-Based Deep Learning Framework. Pattern Recognition Letters, 143, 58-66.
  • 25. Khan, M.A., Zhang, Y. D., Sharif, M., Akram, T., 2021. Pixels to Classes: Intelligent Learning Framework for Multiclass Skin Lesion Localization and Classification. Computers and Electrical Engineering, 90, 106956
  • 26. Mahbod, A., Schaefer, G., Wang, C., Dorffner, G., Ecker, R., Ellinger, I., 2020. Transfer Learning using A Multi-Scale and Multi-Network Ensemble for Skin Lesion Classification. Computer Methods and Programs in Biomedicine, 193, 105475.
  • 27. Al-Masni, M.A., Kim, D.H., Kim, T.S., 2020. Multiple Skin Lesions Diagnostics Via Integrated Deep Convolutional Networks for Segmentation and Classification. Computer Methods and Programs in Biomedicine, 190, 105351.
  • 28. Benyahia, S., Meftah, B., Lézoray, O., 2022. Multi-Features Extraction Based on Deep Learning for Skin Lesion Classification. Tissue and Cell, 74, 101701.
  • 29. Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Halpern, A., 2018. Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging, Hosted by the International Skin Imaging Collaboration. in 2018 IEEE 15th International Symposium on Biomedical Imaging, 168-172.
  • 30. Graves, A., Generating Sequences with Recurrent Neural Networks, 1-43, 2013.
  • 31. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors. Arxiv Preprint Arxiv, 1207.0580.
  • 32. Serte, S., Demirel, H., 2019. Gabor Wavelet-Based Deep Learning for Skin Lesion Classification. Computers in Biology and Medicine, 113, 103423.
  • 33. Yu, Z., Ni, D., Chen, S., Qin, J., Li, S., Wang, T., Lei, B. 2017. Hybrid Dermoscopy Image Classification Framework Based On Deep Convolutional Neural Network and Fisher Vector. in 2017 IEEE 14th International Symposium on Biomedical Imaging, 301-304.
  • 34. Burdick, J., Marques, O., Weinthal, J., Furht, B., 2018. Rethinking Skin Lesion Segmentation in A Convolutional Classifier. Journal of Digital Imaging, 31, 435-440.

Özel Derin Konvolüsyonel Sinir Ağı Kullanarak Cilt Kanseri Tanıma

Year 2023, Volume: 38 Issue: 3, 787 - 797, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377752

Abstract

Cilt kanseri, dünya genelinde milyonlarca insanı etkileyen ciddi ve yaygın bir kanser türüdür. Cilt kanserinin erken teşhisi ve doğru tanısı, hastalığın etkili bir şekilde tedavi edilmesi ve yönetilmesi için önemlidir. Son yıllarda derin öğrenme tekniklerinin ve bilgisayarlı görü algoritmalarının otomatik cilt kanseri tespit sistemleri geliştirmek için kullanılması konusunda büyük bir ilgi bulunmaktadır. Bu teknikler arasında konvolüsyonel sinir ağları (CNN), cilt lezyonlarını tespit etme ve sınıflandırmada dikkate değer bir performans göstermiştir. Bu makalede, Uluslararası Cilt Görüntüleme İşbirliği (ISIC) veri seti kullanılarak cilt kanseri tespiti için CNN ve derin öğrenme tekniklerinin kapsamlı bir çalışmasını sunmaktayız. Önerilen mimari, özelleştirilmiş derin CNN kullanılarak eğitilmiş olan, benign ve malign cilt lezyonu görüntülerinin bir veri setini kullanmaktadır. Önerilen mimari, performans değerlendirmesi için 84.8% doğruluk, 83.8% TPR, 83.7% TNR, 81.6% F1-skoru ve 80.5% hassaslık elde etmiştir. Deneysel sonuçlar, cilt kanserinin doğru ve verimli bir şekilde tespiti için umut verici sonuçlar göstermektedir ve bu yaşamı tehdit eden hastalığın teşhis ve tedavisini iyileştirme potansiyeline sahiptir.

References

  • 1. Dorj, U., Lee, K., Choi, J., Lee, M., 2018. The Skin Cancer Classification using Deep Convolutional Neural Network, Multimedia. Tools Appl. 77, 9909-9924.
  • 2. Naqvi, M., Syed, Q.G., Tehreem, S., Oge, M., Hee-Cheol, K., 2023. Skin Cancer Detection Using Deep Learning-A Review. Diagnostics 13(11), 1911.
  • 3. Zhang, N., Cai, Y.X., Wang, Y.Y., Tian, Y.T., Wang, X.L., Badami, B., 2020. Skin Cancer Diagnosis Based on Optimized Convolutional Neural Network. Artificial Intelligence in Medicine, 102, 101756.
  • 4. Arevalo, J., Cruz-Roa, A., Arias, V., Romero, E., González, F.A., 2015. An Unsupervised Feature Learning Framework for Basal Cell Carcinoma Image Analysis. Artificial Intelligence in Medicine, 64(2), 131-145.
  • 5. Malibari, A.A., Alzahrani, J.S., Eltahir, M.M., Malik, V., Obayya, M., Al Duhayyim, M., Albuquerque, V.H.C., 2022. Optimal Deep Neural Network-Driven Computer-Aided Diagnosis Model for Skin Cancer. Computers and Electrical Engineering, 103, 108318.
  • 6. Rashid, J., Ishfaq, M., Ali, G., Saeed, M.R., Hussain, M., Alkhalifah, T., Samand, N., 2022. Skin Cancer Disease Detection using Transfer Learning Technique. Applied Sciences, 12(11), 5714.
  • 7. Maniraj, S.P., Maran, P.S., 2022. A Hybrid Deep Learning Approach for Skin Cancer Diagnosis Using Subband Fusion of 3D Wavelets. The Journal of Supercomputing, 78(10), 12394-12409.
  • 8. Global Cancer Facts and Figures, American Cancer Society, https://www.cancer.org/ resear ch/cancer-facts-statistics/global.html, Access date: 15.12.2022.
  • 9. Naik, P.P., 2021. Cutaneous Malignant Melanoma: A Review of Early Diagnosis and Management. World Journal of Oncology, 12(1), 7.
  • 10. Manne, R., Kantheti, S., Kantheti, S., 2020. Classification of Skin Cancer Using Deep Learning, Convolutional Neural Networks-Opportunities and Vulnerabilities-A Systematic Review. International Journal for Modern Trends in Science and Technology, 6, 2455-3778.
  • 11. Holman, C.D.J., Armstrong, B.K., Evans, P.R., Lumsden, G.J., Dallimore, K.J., Meehan, C.J., Gibson, I.M., 1984. Relationship of Solar Keratosis and History of Skin Cancer to Objective Measures of Actinic Skin Damage. British Journal of Dermatology, 110(2), 129-138.
  • 12. Kareem, O.S., Abdulazee, A.M., Zeebaree, D.Q., 2021. Skin Lesions Classification using Deep Learning Techniques. Asian Journal of Research in Computer Science, 9(1), 1-22.
  • 13. Saba, T., 2021. Computer Vision for Microscopic Skin Cancer Diagnosis using Handcrafted and Non‐Handcrafted Features. Microscopy Research and Technique, 84(6), 1272-1283.
  • 14. Mridha, K., Uddin, M.M., Shin, J., Khadka, S., Mridha, M.F., 2023. An Interpretable Skin Cancer Classification using Optimized Convolutional Neural Network for A Smart Healthcare System. IEEE Access.
  • 15. Skin Cancer Facts and Statistics - The Skin Cancer Foundation. https://www.skincancer.org /skin-cancer-information/skin-cancer-facts/, Access date: 15.01.2023.
  • 16. Shah, A., Shah, M., Pandya, A., Sushra, R., Sushra, R., Mehta, M., Patel, K., 2023. A Comprehensive Study on Skin Cancer Detection Using Artificial Neural Network (ANN) and Convolutional Neural Network (CNN). Clinical Ehealth.
  • 17. Cao, W., Feng, Z., Zhang, D., Huang, Y., 2020. Facial Expression Recognition Via A CBAM Embedded Network. Procedia Computer Science, 174, 463-477.
  • 18. Deshmukh, S., Rathod, A., Sonawane, H., Raut, R., Devkar, A., 2023. Skin Cancer Classification Using CNN. In 2023 International Conference On Applied Intelligence and Sustainable Computing (ICAISC), 1-5.
  • 19. Qasim Gilani, S., Syed, T., Umair, M., Marques, O., 2023. Skin Cancer Classification using Deep Spiking Neural Network. Journal of Digital Imaging, 1-11.
  • 20. Yadav, S.S., Jadhav, S.M., 2019. Deep Convolutional Neural Network-Based Medical Image Classification for Disease Diagnosis. Journal of Big Data, 6(1), 1-18.
  • 21. Cassidy, B., Kendrick, C., Brodzicki, A., Jaworek-Korjakowska, J., Yap, M.H., 2022. Analysis of the ISIC Image Datasets: Usage, Benchmarks and Recommendations. Medical Image Analysis, 75, 102305.
  • 22. Yanagisawa, H., Yamashita, T., Watanabe, H., 2018. A Study on Object Detection Method from Manga Images using CNN. In 2018 International Workshop on Advanced Image Technology, 1-4.
  • 23. Kannojia, S.P., Jaiswal, G., 2018. Ensemble of Hybrid CNN-ELM Model for Image Classification. In 2018 5th International Conference on Signal Processing and Integrated Networks, 538-541.
  • 24. Khan, M.A., Akram, T., Zhang, Y.D., Sharif, M., 2021. Attributes-Based Skin Lesion Detection and Recognition: A Mask RCNN and Transfer Learning-Based Deep Learning Framework. Pattern Recognition Letters, 143, 58-66.
  • 25. Khan, M.A., Zhang, Y. D., Sharif, M., Akram, T., 2021. Pixels to Classes: Intelligent Learning Framework for Multiclass Skin Lesion Localization and Classification. Computers and Electrical Engineering, 90, 106956
  • 26. Mahbod, A., Schaefer, G., Wang, C., Dorffner, G., Ecker, R., Ellinger, I., 2020. Transfer Learning using A Multi-Scale and Multi-Network Ensemble for Skin Lesion Classification. Computer Methods and Programs in Biomedicine, 193, 105475.
  • 27. Al-Masni, M.A., Kim, D.H., Kim, T.S., 2020. Multiple Skin Lesions Diagnostics Via Integrated Deep Convolutional Networks for Segmentation and Classification. Computer Methods and Programs in Biomedicine, 190, 105351.
  • 28. Benyahia, S., Meftah, B., Lézoray, O., 2022. Multi-Features Extraction Based on Deep Learning for Skin Lesion Classification. Tissue and Cell, 74, 101701.
  • 29. Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Halpern, A., 2018. Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging, Hosted by the International Skin Imaging Collaboration. in 2018 IEEE 15th International Symposium on Biomedical Imaging, 168-172.
  • 30. Graves, A., Generating Sequences with Recurrent Neural Networks, 1-43, 2013.
  • 31. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors. Arxiv Preprint Arxiv, 1207.0580.
  • 32. Serte, S., Demirel, H., 2019. Gabor Wavelet-Based Deep Learning for Skin Lesion Classification. Computers in Biology and Medicine, 113, 103423.
  • 33. Yu, Z., Ni, D., Chen, S., Qin, J., Li, S., Wang, T., Lei, B. 2017. Hybrid Dermoscopy Image Classification Framework Based On Deep Convolutional Neural Network and Fisher Vector. in 2017 IEEE 14th International Symposium on Biomedical Imaging, 301-304.
  • 34. Burdick, J., Marques, O., Weinthal, J., Furht, B., 2018. Rethinking Skin Lesion Segmentation in A Convolutional Classifier. Journal of Digital Imaging, 31, 435-440.
There are 34 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Alhaji Balla Fofanah 0009-0005-2019-0045

Emre Özbilge 0000-0002-2295-752X

Yonal Kırsal 0000-0001-7031-1339

Publication Date October 18, 2023
Published in Issue Year 2023 Volume: 38 Issue: 3

Cite

APA Balla Fofanah, A., Özbilge, E., & Kırsal, Y. (2023). Skin Cancer Recognition Using Compact Deep Convolutional Neural Network. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(3), 787-797. https://doi.org/10.21605/cukurovaumfd.1377752