The Impact of Tempering Temperature on Retained Austenite and Mechanical Properties of 1.2842 Tool Steel
Year 2023,
Volume: 38 Issue: 4, 933 - 938, 28.12.2023
Ender Günerli
,
Melih Bayramoğlu
,
Necdet Geren
Abstract
This work investigates the impact of tempering temperature on the mechanical properties quenched 1.2842 (O2) cold work tool steel depending on the volume fraction of retained austenite (RA). The tempering temperature significantly influences proportion of RA and the mechanical properties. Therefore, the tempering temperature and the volume fractions of RA in through-hardened tool steels must be optimized to minimize dimensional variations and augment performance in service. In this work, the hardened samples were subjected to tempering process at different tempering temperatures and hardnes, impact and tensile tests were applied to the samples. Then the results obtained from these tests were analyzed and optimum tempering temperature was defined. The findings reveal that low-temperature tempering leads to a robust stabilization of the RA phase and better mechanical properties for the steel investigated.
References
- 1. Heat Treatment of Tool Steels, https://www.thefreelibrary.com/Heat+treatment+of+tool+steels.-a066123648, Access date: Sep. 07 2023.
- 2. Uchegbulam, I., Abeer, A.S., Nnorom, O., 2019. Heat Treatment of UNS T72305 Tool Steel: Effect on Mechanical and Microstructural Properties. The International Journal of Engineering and Science 8(9), 50-56.
- 3. Tabatabae, B.A., Ashrafızadeh, F., Hasanlı, A.M., 2011. Influence of Retained Austenite on the Mechanical Properties of Low Carbon Martensitic Stainless Steel Castings. The International Journal of Engineering and Science (ISIJ), 51(3), 471-475.
- 4. Feng, Y., Jing, C., Lin, T., Wu, Z., Li, Z., Zhao. J., 2023. Effect of Retained Austenite on the Microstructure and Mechanical Properties of Cold-rolled Medium-manganese Q&P Steel. Iron & Steelmaking Processes, Products and Applications, 50(2), 167-173.
- 5. Saastamoinen, A., Kaijalainen, A., Nyo, T.T., Suikkanen, P., Porter, D., Kömi, J., 2019. Direct-Quenched and Tempered Low-C High-Strength Structural Steel: The Role of Chemical Composition on Microstructure and Mechanical Properties. Materials Science & Engineering: A, 760, 346-358.
- 6. Podgornik, B., Puš, G., Žužek, B., Leskovšek, V., Godec, M., 2017. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel. Met. Mater. Trans. A, 49(2), 455-462.
- 7. Zhang, Y., Zhan, D., Qi, X., Jiang, Z., 2019. Effect of Tempering Temperature on the Microstructure and Properties of Ultra High Strength Stainless Steel. Journal of Materials Science and Technology, 35(7), 1240-1249.
- 8. Chen, K., Jiang, Z., Liu, F., Yu, J., Li, Y., Gong, W., Chen, C., 2019. Effect of Quenching and Tempering Temperature on Microstructure and Tensile Properties of Microalloyed Ultra-high Strength Suspension Spring Steel. Materials Science and Engineering: A, 766, 1-11.
- 9. Bae, K., Moon, H.S., Park, Y., Jo, I., Lee, J., 2022. Influence of Tempering Temperature and Time on Microstructure and Mechanical Properties of Additively Manufactured H13 Tool Steel. Materials (Basel), 15(23), 1-10.
- 10. Günerli E., Bayramoglu M., Geren N., 2022. Volume Fraction of Retained Austenite in 1.2842 Tool Steel as a Function of Tempering Temperature. European Mechanical Science, 6(4), 263-268.
- 11. Gunerli, E., 2012. Effect of Tempering Temperature on the Mechanical Properties of Hardened 1.2842 Tool Steel, MSc diss., Institute of Natural and Applied Sciences, University of Cukurova, Adana, 108.
- 12. Bala, P., Pacyna, J., Krawczyk, J., 2009. The Kinetics of Phase Transformations During the Tempering HS6-5-2 Steel. Archives of Materials Science and Engineering, 35(2), 69-76.
- 13. Kokosza, A., Pacyna, J., 2008. Effect of Retained Austenite on the Fracture Toughness of Tempered Tool Steel. Archives of Materials Science and Engineering, 31(2), 87-90.
- 14. Zhou, S.B., Hu, F., Zhou, W., Cheng, L., Hu, C.Y., Wu, K.M., 2021. Effect of Retained Austenite on Impact Toughness and Fracture Behavior of Medium Carbon Submicron-Structured Bainitic Steel. Journal of Materials Research and Technology, 14, 1021-1034
- 15. Herring, D.H., 2006. The Embrittlement Phenomena in Hardened and Tempered Steel. Industrial Heating, 10, 16-18.
- 16. Euser, V.K., Don, L.W., Kip, O.F., Amy, J.C., Speer, J.G., 2021. The Role of Retained Austenite in Tempered Martensite Embrittlement of 4340 and 300-M Steels Investigated Through Rapid Tempering. Metals, 11(9), 1-12.
- 17. Spink, G.M., 1977. Reversible Temper Embrittlement of Rotor Steels. Metallurgical Transactions A, 8(1), 135-143.
- 18. Bandyopadhyay, N., McMahon, C.J., 1983. The Micro-mechanisms of Tempered Martensite Embrittlement in 4340-type Steels. Metall Trans A, 14, 1313-1325.
Temperleme Sıcaklığının Kalıntı Östenit ve 1.2842 Takım Çeliğinin Mekanik Özelliklerine Etkisi
Year 2023,
Volume: 38 Issue: 4, 933 - 938, 28.12.2023
Ender Günerli
,
Melih Bayramoğlu
,
Necdet Geren
Abstract
Bu çalışmada, temperleme sıcaklığı ve kalıntı östenit miktarının, sertleştirilme işlemine tabi tutulmuş 1.2842 (O2) soğuk iş takım çeliğinin mekanik özelliklerine etkisi araştırılmıştır. Sertleştirme ısıl işlemi sonrası uygulanan temperleme işlemlerinde sıcaklığı kalıntı östenit miktarını önemli derecede etkilemektedir. Bu nedenden ısıl işlemler sonrası istenilen mekanik özelliklerinin elde edilebilmesi için kalıntı östenit miktarı ve temperleme sıcaklığının optimize edilmesi gerekmektedir. Bu çalışmada, sertleştirilmiş ve farklı sıcaklıklarda temperleme işlemine tabi tutulmuş numunelerde elde edilen sertlik, tokluk, çekme dayanımı ve yüzde uzama değerlerini belirlemek için sırası ile sertlik, çentik darbe ve çekme testleri yapılmıştır. Bu testlerde elde edilen sonuçlar analiz edilerek optimum temperleme sıcaklığı belirlenmiştir. Deneylerden elde edilen sonuçlara göre 1.2842 soğuk iş takım çeliği için kalıntı östenit miktarının en olumlu etkisi ve en uygun mekanik özelliklerin düşük temperleme sıcaklığında olduğu gözlenmiştir.
References
- 1. Heat Treatment of Tool Steels, https://www.thefreelibrary.com/Heat+treatment+of+tool+steels.-a066123648, Access date: Sep. 07 2023.
- 2. Uchegbulam, I., Abeer, A.S., Nnorom, O., 2019. Heat Treatment of UNS T72305 Tool Steel: Effect on Mechanical and Microstructural Properties. The International Journal of Engineering and Science 8(9), 50-56.
- 3. Tabatabae, B.A., Ashrafızadeh, F., Hasanlı, A.M., 2011. Influence of Retained Austenite on the Mechanical Properties of Low Carbon Martensitic Stainless Steel Castings. The International Journal of Engineering and Science (ISIJ), 51(3), 471-475.
- 4. Feng, Y., Jing, C., Lin, T., Wu, Z., Li, Z., Zhao. J., 2023. Effect of Retained Austenite on the Microstructure and Mechanical Properties of Cold-rolled Medium-manganese Q&P Steel. Iron & Steelmaking Processes, Products and Applications, 50(2), 167-173.
- 5. Saastamoinen, A., Kaijalainen, A., Nyo, T.T., Suikkanen, P., Porter, D., Kömi, J., 2019. Direct-Quenched and Tempered Low-C High-Strength Structural Steel: The Role of Chemical Composition on Microstructure and Mechanical Properties. Materials Science & Engineering: A, 760, 346-358.
- 6. Podgornik, B., Puš, G., Žužek, B., Leskovšek, V., Godec, M., 2017. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel. Met. Mater. Trans. A, 49(2), 455-462.
- 7. Zhang, Y., Zhan, D., Qi, X., Jiang, Z., 2019. Effect of Tempering Temperature on the Microstructure and Properties of Ultra High Strength Stainless Steel. Journal of Materials Science and Technology, 35(7), 1240-1249.
- 8. Chen, K., Jiang, Z., Liu, F., Yu, J., Li, Y., Gong, W., Chen, C., 2019. Effect of Quenching and Tempering Temperature on Microstructure and Tensile Properties of Microalloyed Ultra-high Strength Suspension Spring Steel. Materials Science and Engineering: A, 766, 1-11.
- 9. Bae, K., Moon, H.S., Park, Y., Jo, I., Lee, J., 2022. Influence of Tempering Temperature and Time on Microstructure and Mechanical Properties of Additively Manufactured H13 Tool Steel. Materials (Basel), 15(23), 1-10.
- 10. Günerli E., Bayramoglu M., Geren N., 2022. Volume Fraction of Retained Austenite in 1.2842 Tool Steel as a Function of Tempering Temperature. European Mechanical Science, 6(4), 263-268.
- 11. Gunerli, E., 2012. Effect of Tempering Temperature on the Mechanical Properties of Hardened 1.2842 Tool Steel, MSc diss., Institute of Natural and Applied Sciences, University of Cukurova, Adana, 108.
- 12. Bala, P., Pacyna, J., Krawczyk, J., 2009. The Kinetics of Phase Transformations During the Tempering HS6-5-2 Steel. Archives of Materials Science and Engineering, 35(2), 69-76.
- 13. Kokosza, A., Pacyna, J., 2008. Effect of Retained Austenite on the Fracture Toughness of Tempered Tool Steel. Archives of Materials Science and Engineering, 31(2), 87-90.
- 14. Zhou, S.B., Hu, F., Zhou, W., Cheng, L., Hu, C.Y., Wu, K.M., 2021. Effect of Retained Austenite on Impact Toughness and Fracture Behavior of Medium Carbon Submicron-Structured Bainitic Steel. Journal of Materials Research and Technology, 14, 1021-1034
- 15. Herring, D.H., 2006. The Embrittlement Phenomena in Hardened and Tempered Steel. Industrial Heating, 10, 16-18.
- 16. Euser, V.K., Don, L.W., Kip, O.F., Amy, J.C., Speer, J.G., 2021. The Role of Retained Austenite in Tempered Martensite Embrittlement of 4340 and 300-M Steels Investigated Through Rapid Tempering. Metals, 11(9), 1-12.
- 17. Spink, G.M., 1977. Reversible Temper Embrittlement of Rotor Steels. Metallurgical Transactions A, 8(1), 135-143.
- 18. Bandyopadhyay, N., McMahon, C.J., 1983. The Micro-mechanisms of Tempered Martensite Embrittlement in 4340-type Steels. Metall Trans A, 14, 1313-1325.