Research Article
BibTex RIS Cite

Wideband Channel Estimation with Imperfect Hardware for Reconfigurable Intelligent Surfaces

Year 2023, Volume: 38 Issue: 4, 1083 - 1091, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410700

Abstract

Channel estimation is central part of reconfigurable intelligent surface (RIS) aided communication for active and passive beamforming. The primary challenge behind channel estimate is large dimensionality stemming from not only massive number of RIS elements but also many antennas in base station. Large dimensionality leads to excessive usage of pilot tones for OFDM signals implying high overhead and decreased throughput. To alleviate the high usage of pilots for channel estimation, in this study we propose to have a low complexity transmitter at the RIS simplifed with an aggressive clipping policy and a robust channel estimator against clipping. For robust channel estimation, a generative machine learning model is adapted to exploit prior information to compensate the information loss due to clipping. The simulation results clearly indicate that the proposed estimator has quite a large resiliency for clipped transmitted signals as compared to linear channel estimators.

References

  • 1. Renzo, M.D., Debbah, M., PhanHuy, D.T., Zappone, A., Alouini, M.S., Yuen, C., Sciancalepore, V., Alexandropoulos, C.G., Hoydis, J., Gacanin, H., Rosnyde, J., Bounceur, A., Lerosey, G., Fink, M., 2019. Smart Radio Environments Empowered by Reconfigurable AI Meta-Surfaces: An Idea Whose Time Has Come. EURASIP Journal on Wireless Commun. Netw., 129, 1-20.
  • 2. Wu, Q., Zhang, R., 2019. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. On Wireless Communications, 18(11), 5394-5409.
  • 3. Liaskos, C., Nie, S., Tsioliaridou, A., Pitsillides, A., Ioannidis, S., Akyildiz, I., 2018. A New Wireless Communication Paradigm Through Software Controlled Metasurfaces. IEEE Commun. Mag., 56(9), 162-169.
  • 4. Mishra, D., Johansson, H., 2019. Channel Estimation and Low-Complexity Beamforming Design for Passive Intelligent Surface Assisted MISO Wireless Energy Transfer. Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP), 12-17 May 2019, Brighton, UK.
  • 5. Jensen, T.L., Carvalho, E.D., 2020. On Optimal Channel Estimation Scheme for Intelligent Reflecting Surfaces Based on a Minimum Variance Unbiased Estimator. Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP), 4-8 May, Barcelona.
  • 6. Zheng, B., Zhang, R., 2020. Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization. IEEE Wireless Commun. Letters, 9(4), 518-522.
  • 7. Nadeem, Q.U.A., Kammoun, A., Chaaban, A., Debbah, M., Alouini, M.S., 2019. Intelligent Reflecting Surface Assisted Multiuser MISO Communication. IEEE Open Journal of Communication Society, 1, 661-680.
  • 8. Chen, J., Liang, Y.C., Cheng, H.V., Yu, W., 2020. Channel Estimation for Reconfigurable Intelligent Surface Aided Multi-User MIMO Systems. IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 26-29 May 2020, Atlanta, GA, USA.
  • 9. Wan, Z., Gao, Z., Alouini, M.S., 2020. Broadband Channel Estimation for Intelligent Reflecting Surface Aided MMwave Massive MIMO Systems. IEEE International Conference on Communications (ICC), 7-11 June 2020, Dublin, Ireland.
  • 10. Taha, A., Alrabeiah, M., Alkhateeb, A., 2019. Enabling Large Intelligent Surfaces with Compressive Sensing and Deep Learning. arXiv preprint arXiv:1904.10136.
  • 11. Li, Y., Cimini, L., Sollenberger, N., 1997. Robust Channels Estimation for OFDM Systems with Rapid Dispersive Fading Channels. IEEE Trans. Commun., 46, 902–915.
  • 12. Kay, M. S., Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory. Pearson Education, 608.
  • 13. Dardari, D., Tralli, V., Vaccari, A., 2000. A Theoretical Characterization of Nonlinear Distortion Effects in OFDM Systems. IEEE Trans. Commun., 48(10), 1755-1764.
  • 14. Mohammed, S.K., Larsson, E.G., 2013. Per-antenna Constant Envelope Precoding for Large Multi-User MIMO Systems. IEEE Trans on Comm, 61(3), 1059-1071.
  • 15. Balevi, E., Doshi, A., Jalal, A., Dimakis, A., Andrews, J.G., 2021. High Dimensional Channel Estimation Using Deep Generative Networks. IEEE Journal on Selected Areas in Communications, 39(1), 18-30.
  • 16. Balevi, E., Andrews, J.G., 2021. Wideband Channel Estimation with a Generative Adversarial Network. IEEE Transactions on Wireless Communications, 20(5), 3049-3060.
  • 17. Bjornson, E., Hoydis, J., Sanguinetti, L., 2017. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Foundations and Trends in Signal Processing, Now Publishers, Inc, 516.
  • 18. Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein Generative Adversarial Networks. Proceedings of the 34th International Conference on Machine Learning, PMLR, 06-11 August 2017, Sydney, Australia.
  • 19. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C., 2017. Improved Training of Wasserstein Generative Adversarial Networks. Proceedings of 30th Advances in Neural Information Processing Systems (NIPS), 4-9 Dec, 2017, Long Beach, California.
  • 20. Radford, A., Metz, L., Chintala, S., 2017. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv preprint arXiv:1511.06434.

İdeal Olmayan Donanıma Sahip Yeniden Yapılandırılabilir Akıllı Yüzeyler için Geniş Bant Kanal Kestirimi

Year 2023, Volume: 38 Issue: 4, 1083 - 1091, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410700

Abstract

Kanal kestirimi, aktif ve pasif huzme oluşturma amaçlı kullanılan yeniden yapılandırılabilir akıllı yüzeyler (RIS) destekli iletişimin merkezi bir parçasıdır. Kanal kestiriminin arkasındaki temel zorluk, çok fazla RIS öğelerinden ve aynı zamanda baz istasyonundaki birçok antenden kaynaklanan büyük boyutluluktur. Büyük boyutluluk, OFDM sinyalleri için pilot tonların aşırı kullanımına yol açar, bu da fazla ek yük ve azalan veri hızı anlamına gelir. Kanal kestiriminde pilotların fazla kullanımını azaltmak için bu çalışmada, RIS'de düşük karmaşıklığa sahip bir vericiye sahip olmak için agresif bir kırpma politikası ve kırpmaya karşı dayanıklı bir kanal kestirimi öneriyoruz. Dayanıklı kanal tahmini için, kırpmadan kaynaklanan bilgi kaybını telafi etmek üzere önceki bilgileri kullanan üretken bir makine öğrenimi modeli uyarlanmaktadır. Simülasyon sonuçları, önerilen kanal kestiriminin, doğrusal kanal kestirimleri ile karşılaştırıldığında kırpılmış iletilen sinyaller için oldukça büyük bir esnekliğe sahip olduğunu açıkça göstermektedir.

References

  • 1. Renzo, M.D., Debbah, M., PhanHuy, D.T., Zappone, A., Alouini, M.S., Yuen, C., Sciancalepore, V., Alexandropoulos, C.G., Hoydis, J., Gacanin, H., Rosnyde, J., Bounceur, A., Lerosey, G., Fink, M., 2019. Smart Radio Environments Empowered by Reconfigurable AI Meta-Surfaces: An Idea Whose Time Has Come. EURASIP Journal on Wireless Commun. Netw., 129, 1-20.
  • 2. Wu, Q., Zhang, R., 2019. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. On Wireless Communications, 18(11), 5394-5409.
  • 3. Liaskos, C., Nie, S., Tsioliaridou, A., Pitsillides, A., Ioannidis, S., Akyildiz, I., 2018. A New Wireless Communication Paradigm Through Software Controlled Metasurfaces. IEEE Commun. Mag., 56(9), 162-169.
  • 4. Mishra, D., Johansson, H., 2019. Channel Estimation and Low-Complexity Beamforming Design for Passive Intelligent Surface Assisted MISO Wireless Energy Transfer. Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP), 12-17 May 2019, Brighton, UK.
  • 5. Jensen, T.L., Carvalho, E.D., 2020. On Optimal Channel Estimation Scheme for Intelligent Reflecting Surfaces Based on a Minimum Variance Unbiased Estimator. Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP), 4-8 May, Barcelona.
  • 6. Zheng, B., Zhang, R., 2020. Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization. IEEE Wireless Commun. Letters, 9(4), 518-522.
  • 7. Nadeem, Q.U.A., Kammoun, A., Chaaban, A., Debbah, M., Alouini, M.S., 2019. Intelligent Reflecting Surface Assisted Multiuser MISO Communication. IEEE Open Journal of Communication Society, 1, 661-680.
  • 8. Chen, J., Liang, Y.C., Cheng, H.V., Yu, W., 2020. Channel Estimation for Reconfigurable Intelligent Surface Aided Multi-User MIMO Systems. IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 26-29 May 2020, Atlanta, GA, USA.
  • 9. Wan, Z., Gao, Z., Alouini, M.S., 2020. Broadband Channel Estimation for Intelligent Reflecting Surface Aided MMwave Massive MIMO Systems. IEEE International Conference on Communications (ICC), 7-11 June 2020, Dublin, Ireland.
  • 10. Taha, A., Alrabeiah, M., Alkhateeb, A., 2019. Enabling Large Intelligent Surfaces with Compressive Sensing and Deep Learning. arXiv preprint arXiv:1904.10136.
  • 11. Li, Y., Cimini, L., Sollenberger, N., 1997. Robust Channels Estimation for OFDM Systems with Rapid Dispersive Fading Channels. IEEE Trans. Commun., 46, 902–915.
  • 12. Kay, M. S., Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory. Pearson Education, 608.
  • 13. Dardari, D., Tralli, V., Vaccari, A., 2000. A Theoretical Characterization of Nonlinear Distortion Effects in OFDM Systems. IEEE Trans. Commun., 48(10), 1755-1764.
  • 14. Mohammed, S.K., Larsson, E.G., 2013. Per-antenna Constant Envelope Precoding for Large Multi-User MIMO Systems. IEEE Trans on Comm, 61(3), 1059-1071.
  • 15. Balevi, E., Doshi, A., Jalal, A., Dimakis, A., Andrews, J.G., 2021. High Dimensional Channel Estimation Using Deep Generative Networks. IEEE Journal on Selected Areas in Communications, 39(1), 18-30.
  • 16. Balevi, E., Andrews, J.G., 2021. Wideband Channel Estimation with a Generative Adversarial Network. IEEE Transactions on Wireless Communications, 20(5), 3049-3060.
  • 17. Bjornson, E., Hoydis, J., Sanguinetti, L., 2017. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Foundations and Trends in Signal Processing, Now Publishers, Inc, 516.
  • 18. Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein Generative Adversarial Networks. Proceedings of the 34th International Conference on Machine Learning, PMLR, 06-11 August 2017, Sydney, Australia.
  • 19. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C., 2017. Improved Training of Wasserstein Generative Adversarial Networks. Proceedings of 30th Advances in Neural Information Processing Systems (NIPS), 4-9 Dec, 2017, Long Beach, California.
  • 20. Radford, A., Metz, L., Chintala, S., 2017. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv preprint arXiv:1511.06434.
There are 20 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Articles
Authors

Eren Balevi 0000-0002-2097-051X

Publication Date December 28, 2023
Published in Issue Year 2023 Volume: 38 Issue: 4

Cite

APA Balevi, E. (2023). Wideband Channel Estimation with Imperfect Hardware for Reconfigurable Intelligent Surfaces. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 1083-1091. https://doi.org/10.21605/cukurovaumfd.1410700