Research Article
BibTex RIS Cite

Examining the Effects of a Flood Event in the Lower Ceyhan Basin in 1980 Using Historical Satellite Data

Year 2024, Volume: 39 Issue: 1, 85 - 93, 28.03.2024
https://doi.org/10.21605/cukurovaumfd.1459386

Abstract

Analysis of past flood events contributes forecasting of effects of future flood events. Flood maps have been created in order to assess flood hazards in planning projects and to identify flood-inundated regions with flood damage following flood occurrences. Flood mapping in the context of flood monitoring enables development of flood management strategies to protect life and property. Although conventional terrestrial observations and measurements in flood control have been constrained by topographical and meteorological circumstances, remote sensing provides decision support with quick analysis capability. The flood event that occurred in the Lower Ceyhan Basin of Turkey in 1980 was examined in this work utilizing satellite-based remote sensing techniques, and flood inundation areas were calculated using NDWI (Normalized Difference Water Index). As a result, it was determined that 3493.45 ha in the north of Karataş in the Lower Ceyhan Plain, 7799.42 ha between Bahçe, Akdeniz, and Yumurtalık, 7404.9 ha around Çatalpınar and Yakapınar in the Lower Ceyhan Plain, and approximately 24890 ha in the Upper Ceyhan were affected by the flood event in 1980.

References

  • 1. Shrubsole, D., Kreutzwiser, R., Mitchell, B., Dickinson, T., Joy, D., 1993. The History of Flood Damages in Ontario. Canadian Water Resources Journal, 18(2), 133-143.
  • 2. Williams, A., Archer, D., 2002. The use of Historical Flood Information in the English Midlands to Improve Risk Assessment. Hydrological Sciences Journal, 47(1), 57-76.
  • 3. Glaser, R., Stangl, H., 2003. Historical Floods in the Dutch Rhine Delta. Natural Hazards and Earth System Sciences, 3, 605-613.
  • 4. Payrastre, O., Gaume, E., Andrieu, H., 2005. Use of Historical Data to Assess the Occurrence of Floods in Small Watersheds in the French Mediterranean Area. Advances in Geosciences, 2, 313-320.
  • 5. Macdonald, N., 2006. An Underutilized Resource: Historical Flood Chronologies a Valuable Resource in Determining Periods of Hydro-geomorphic Change, Sediment Dynamics and the Hydromorphology of Fluvial Systems. Proceedings of a Symposium Held in Dundee, UK, IAHS Publ., 306.
  • 6. Macdonald, N., Black, A.R., 2010. Reassessment of Flood Frequency Using Historical Information for the River Ouse at York, UK (1200–2000). Hydrological Sciences Journal-Journal des Sciences Hydrologiques, 55(7), 1152-1162.
  • 7. Macdonald, N., Kjeldsen, T.R., Prosdocimi, I., Sangster, H., 2014. Reassessing Flood Frequency for the Sussex Ouse, Lewes: The Inclusion of Historical Flood Information Since AD 1650. Nat. Hazards Earth Syst. Sci., 14, 2817-2828.
  • 8. Strupczewski, W.G., Kochanek, K., Bogdanowicz, E., 2014. Flood Frequency Analysis Supported by the Largest Historical Flood. Nat. Hazards Earth Syst. Sci., 14, 1543-1551.
  • 9. Herget, J., Roggenkamp, T., Krell, M., 2014. Estimation of Peak Discharges of Historical Floods. Hydrol. Earth Syst. Sci., 18, 4029-4037.
  • 10. Machado, M.J., Botero, B.A., López, J., Francés, F., Díez-Herrero, A., Benito, G., 2015. Flood Frequency Analysis of Historical Flood Data under Stationary and Non-stationary Modelling. Hydrol. Earth Syst. Sci., 19, 2561-2576.
  • 11. Enciso, A.M., Carvajal-Escobar, Y., Sandoval, M.C., 2016. Hydrological Analysis of Historical Floods in the Upper Valley of Cauca River. Ingeniería y Competitividad, 18(1), 47-58.
  • 12. Pal, R., Biswas, S.S., Mondal, B., Pramanik, M.K., 2016. Landslides and Floods in the Tista Basin (Darjeeling and Jalpaiguri Districts): Historical Evidence, Causes and Consequences. J. Ind. Geophys. Union, 20(2), 66-72.
  • 13. Deutch, M., Reeh, T., Karthe, D., 2018. Severe Historical Floods on the River Roda, Thuringia: from Reconstruction to Implications for Flood Management. DIE ERDE, 149(2-3), 64-75.
  • 14. Engeland, K., Wilson, D., Borsányi, P., Roald, L., Holmqvist, E., 2018. Use of Historical Data in Flood Frequency Analysis: A Case Study for Four Catchments in Norway. Hydrology Research, 49(2), 466-486.
  • 15. Islam, M., Sado, K., 2000. Satellite Remote Sensing Data Analysis for Flood Damaged Zoning with GIS for Flood Management. Annual Journal of Hydraulic Engineering, JSCE, 44, 301-306.
  • 16. De Groeve, T., 2010. Flood Monitoring and Mapping Using Passive Microwave Remote Sensing in Namibia. Geomatics, Natural Hazards and Risk, 1(1), 19-35.
  • 17. Schnebele, E., Cervone, G., 2013. Improving Remote Sensing Flood Assessment Using Volunteered Geographical Data. Nat. Hazards Earth Syst. Sci., 13, 669-677.
  • 18. Long, S., Fatoyinbo, T.E., Policelli, F., 2014. Flood Extent Mapping for Namibia Using Change Detection and Thresholding with SAR. Environ. Res. Lett., 9, 035002.
  • 19. Martinis, S., Rieke, C., 2015. Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR Data in the Context of Flood Mapping at River Saale, Germany. Remote Sens., 7, 7732-7752.
  • 20. Hazır, İ., Akgül, M.A., Alkaya, M., Dağdeviren, M., 2016. 27 Ocak-14 Mart 2012 Tarihleri Arasında Hatay İli Amik Ovasında Meydana Gelen Taşkınların Coğrafi Bilgi Sistemleri Kullanılarak Değerlendirilmesi, 4. Ulusal Taşkın Sempozyumu Tebliğler Kitabı, 55-66, Rize.
  • 21. Akgül, M.A., 2018. Sentetik Açıklıklı Radar Verilerinin Taşkın Çalışmalarında Kullanılması: Berdan Ovası Taşkını. Geomatik Dergisi, 3(2), 154-162.
  • 22. Yulianto, F., Suwarsono, N., Sulma, S., Khomarudin, M.R., 2018. Observing the Inundated Area Using Landsat-8 Multitemporal Images and Determination of Flood-prone Area in Bandung Basin. International Journal of Remote Sensing and Earth Sciences, 15(2), 131-140.
  • 23. Ul Moazzam, M.F., Vansarochana, A., Rahman, A.U., 2018. Analysis of Flood Susceptibility and Zonation for Risk Management Using Frequency Ratio Model in District Charsadda, Pakistan. International Journal of Environment and Geoinformatics, 5(2), 140-153.
  • 24. Alahacoon, N., Matheswaran, K., Pani, P., Amarnath, G., 2018. A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001–2016) for Flood Hazard Mapping in Sri Lanka. Remote Sens., 2018(10), 448.
  • 25. Enea, A., Urzica, A., Breaban, I.G., 2018. Remote Sensing, GIS and HEC-RAS Techniques, Applied for Flood Extent Validation, Based on Landsat Imagery, LIDAR and Hydrological Data. Case Study: Baseu River, Romania. Journal of Environmental Protection and Ecology, 19(3), 1091-1101.
  • 26. Akgül, M.A., Çetin, M., 2019. Tarımsal Drenaj Alanlarında Meydana Gelen Taşkınlar ve Etki Alanlarının Uzaktan Algılama ile Belirlenmesi: Aşağı Seyhan Ovası Alt Havzasında Örnek Bir Çalışma. 10. Ulusal Hidroloji Kongresi, 9-12 Ekim 2019, Muğla.
  • 27. Bhattacharya, B., Mazzoleni, M., Ugay, R., 2019. Flood Inundation Mapping of the Sparsely Gauged Large-Scale Brahmaputra Basin Using Remote Sensing Products. Remote Sens., 11, 501.
  • 28. Güvel, Ş.P., Akgül, M.A., Aksu, H., 2022. Flood Inundation Maps Using Sentinel-2: a Case Study in Berdan Plain. Water Supply, 22(4), 4098-4108.
  • 29. Munasinghe, D., Cohen, S., Huang, Y., Tsang, Y., Zhang, J., Fang, Z., 2018. Intercomparison of Satellite Remote Sensing-Based Flood Inundation Mapping Techniques. Journal of the American Water Resources Association (JAWRA), 54(4), 834-846.
  • 30. Dash, P., Sar, J., 2020. Identification and Validation of Potential Flood Hazard Area Using GIS-based Multi-Criteria Analysis and Satellite Data-derived Water Index. J Flood Risk Management, 13(11), 1-14.
  • 31. DSİ, 1980. Seyhan Taşkın Raporu (27 Mart 1980-6 Nisan 1980), Ankara.
  • 32. IECO, 1966. Water Resources Development Ceyhan Basin Projects Seyhan Basin Projects Berdan Project Develi Project Amik Project Master Plan. May 1966, International Engineering Company, Inc. 74 New Montgomery St. San Fransisco 5, California.
  • 33. U.S. Geological Survey, 2016. Landsat-Earth observation satellites (ver. 1.2, April 2020): U.S. Geological Survey, Fact Sheet 2015–3081, 4.
  • 34. NASA, 2022. https://www.nasa.gov/mission_ pages/landsat/overview/index.html, Access date: 05.01.2022.
  • 35. Ogashawara, I., Curtarelli, M.P., Ferreira, C.M., 2013. The Use of Optical Remote Sensing For Mapping Flooded Areas. Int. Journal of Engineering Research and Application, 3(5), 1956-1960.
  • 36. Suwarsono, Nugroho, J.T., Wiweka, 2013. Identification of Inundated Area Using Normalized Difference Water Index (NDWI) on Lowland Region of Java Island. International Journal of Remote Sensing and Earth Sciences, 10(2), 114-121.
  • 37. Rotjanakusol, T., Laosuwan, T., 2018. Inundation Area Investigation Approach Using Remote Sensing Technology on 2017 Flooding in Sakon Nakhon Province Thailand. Studia Universitatis Vasile Goldis, Seria Stiintele Vietii (Life Sciences Series), 28(4), 159-166.
  • 38. Silas, M.Y., Taofeek, S.A., Adewale, A.K., Adeyemi, S.S., Victor, D., 2019. Flood Inundation and Monitoring Mapping in Nigeria Using Modis Surface Reflectance. Journal of Scientific Research & Reports, 22(1), 1-12.
  • 39. Kashyap, M., Bhatt, C.M., Rawat, J.S., Suthar, K., 2021. Application of Sentinel 2 Data for Extraction of Flood Inundation Along Ganga River, Bihar. International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE), 10(3), 47-52.
  • 40. McFeeters, S., 1996. The Use of Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. International Journal of Remote Sensing, 17(7), 1425-1432.

1980 Yılında Aşağı Ceyhan Havzasında Gerçekleşen Taşkın Olayının Tarihsel Uydu Verisi Kullanılarak İncelenmesi

Year 2024, Volume: 39 Issue: 1, 85 - 93, 28.03.2024
https://doi.org/10.21605/cukurovaumfd.1459386

Abstract

Geçmişteki taşkın olaylarının analizi, gelecekteki taşkın etkilerinin tahmin edilmesine yardımcı olur. Taşkın haritaları, taşkın tehlikelerini planlama sürecinde değerlendirmek ve taşkın sonrası hasarı olan bölgeleri belirlemek için hazırlanmaktadır. Taşkın haritalarının yapılması, taşkınların izlenmesi kapsamında, can ve malları korumak için taşkın yönetim stratejilerinin geliştirilmesini sağlamaktadır. Taşkın kontrol çalışmalarında, geleneksel karasal ölçümler ve gözlemler, topografik ve meteorolojik koşullar tarafından sınırlandırılmış olsa da, uzaktan algılama tekniği, hızlı analiz yeteneği ile karar desteği sağlamaktadır. Bu çalışmada 1980 yılında Türkiye'nin Aşağı Ceyhan Havzasında meydana gelen taşkın olayı uydu tabanlı uzaktan algılama teknikleri kullanılarak incelenmiş ve NDWI (Normalize Edilmiş Su İndeksi) kullanılarak taşkın alanları hesaplanmıştır. Sonuç olarak, Aşağı Ceyhan Ovası'nda, Karataş kuzeyinde 3493,45 ha, Bahçe, Akdeniz ve Yumurtalık arasında 7799,42 ha, Çatalpınar ve Yakapınar çevresinde 7404,9 ha ve Yukarı Ceyhan Ovası'nda yaklaşık 24890 ha alanın 1980 yılındaki Aşağı Ceyhan Havzasında gerçekleşen taşkın olayından etkilendiği tespit edilmiştir.

References

  • 1. Shrubsole, D., Kreutzwiser, R., Mitchell, B., Dickinson, T., Joy, D., 1993. The History of Flood Damages in Ontario. Canadian Water Resources Journal, 18(2), 133-143.
  • 2. Williams, A., Archer, D., 2002. The use of Historical Flood Information in the English Midlands to Improve Risk Assessment. Hydrological Sciences Journal, 47(1), 57-76.
  • 3. Glaser, R., Stangl, H., 2003. Historical Floods in the Dutch Rhine Delta. Natural Hazards and Earth System Sciences, 3, 605-613.
  • 4. Payrastre, O., Gaume, E., Andrieu, H., 2005. Use of Historical Data to Assess the Occurrence of Floods in Small Watersheds in the French Mediterranean Area. Advances in Geosciences, 2, 313-320.
  • 5. Macdonald, N., 2006. An Underutilized Resource: Historical Flood Chronologies a Valuable Resource in Determining Periods of Hydro-geomorphic Change, Sediment Dynamics and the Hydromorphology of Fluvial Systems. Proceedings of a Symposium Held in Dundee, UK, IAHS Publ., 306.
  • 6. Macdonald, N., Black, A.R., 2010. Reassessment of Flood Frequency Using Historical Information for the River Ouse at York, UK (1200–2000). Hydrological Sciences Journal-Journal des Sciences Hydrologiques, 55(7), 1152-1162.
  • 7. Macdonald, N., Kjeldsen, T.R., Prosdocimi, I., Sangster, H., 2014. Reassessing Flood Frequency for the Sussex Ouse, Lewes: The Inclusion of Historical Flood Information Since AD 1650. Nat. Hazards Earth Syst. Sci., 14, 2817-2828.
  • 8. Strupczewski, W.G., Kochanek, K., Bogdanowicz, E., 2014. Flood Frequency Analysis Supported by the Largest Historical Flood. Nat. Hazards Earth Syst. Sci., 14, 1543-1551.
  • 9. Herget, J., Roggenkamp, T., Krell, M., 2014. Estimation of Peak Discharges of Historical Floods. Hydrol. Earth Syst. Sci., 18, 4029-4037.
  • 10. Machado, M.J., Botero, B.A., López, J., Francés, F., Díez-Herrero, A., Benito, G., 2015. Flood Frequency Analysis of Historical Flood Data under Stationary and Non-stationary Modelling. Hydrol. Earth Syst. Sci., 19, 2561-2576.
  • 11. Enciso, A.M., Carvajal-Escobar, Y., Sandoval, M.C., 2016. Hydrological Analysis of Historical Floods in the Upper Valley of Cauca River. Ingeniería y Competitividad, 18(1), 47-58.
  • 12. Pal, R., Biswas, S.S., Mondal, B., Pramanik, M.K., 2016. Landslides and Floods in the Tista Basin (Darjeeling and Jalpaiguri Districts): Historical Evidence, Causes and Consequences. J. Ind. Geophys. Union, 20(2), 66-72.
  • 13. Deutch, M., Reeh, T., Karthe, D., 2018. Severe Historical Floods on the River Roda, Thuringia: from Reconstruction to Implications for Flood Management. DIE ERDE, 149(2-3), 64-75.
  • 14. Engeland, K., Wilson, D., Borsányi, P., Roald, L., Holmqvist, E., 2018. Use of Historical Data in Flood Frequency Analysis: A Case Study for Four Catchments in Norway. Hydrology Research, 49(2), 466-486.
  • 15. Islam, M., Sado, K., 2000. Satellite Remote Sensing Data Analysis for Flood Damaged Zoning with GIS for Flood Management. Annual Journal of Hydraulic Engineering, JSCE, 44, 301-306.
  • 16. De Groeve, T., 2010. Flood Monitoring and Mapping Using Passive Microwave Remote Sensing in Namibia. Geomatics, Natural Hazards and Risk, 1(1), 19-35.
  • 17. Schnebele, E., Cervone, G., 2013. Improving Remote Sensing Flood Assessment Using Volunteered Geographical Data. Nat. Hazards Earth Syst. Sci., 13, 669-677.
  • 18. Long, S., Fatoyinbo, T.E., Policelli, F., 2014. Flood Extent Mapping for Namibia Using Change Detection and Thresholding with SAR. Environ. Res. Lett., 9, 035002.
  • 19. Martinis, S., Rieke, C., 2015. Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR Data in the Context of Flood Mapping at River Saale, Germany. Remote Sens., 7, 7732-7752.
  • 20. Hazır, İ., Akgül, M.A., Alkaya, M., Dağdeviren, M., 2016. 27 Ocak-14 Mart 2012 Tarihleri Arasında Hatay İli Amik Ovasında Meydana Gelen Taşkınların Coğrafi Bilgi Sistemleri Kullanılarak Değerlendirilmesi, 4. Ulusal Taşkın Sempozyumu Tebliğler Kitabı, 55-66, Rize.
  • 21. Akgül, M.A., 2018. Sentetik Açıklıklı Radar Verilerinin Taşkın Çalışmalarında Kullanılması: Berdan Ovası Taşkını. Geomatik Dergisi, 3(2), 154-162.
  • 22. Yulianto, F., Suwarsono, N., Sulma, S., Khomarudin, M.R., 2018. Observing the Inundated Area Using Landsat-8 Multitemporal Images and Determination of Flood-prone Area in Bandung Basin. International Journal of Remote Sensing and Earth Sciences, 15(2), 131-140.
  • 23. Ul Moazzam, M.F., Vansarochana, A., Rahman, A.U., 2018. Analysis of Flood Susceptibility and Zonation for Risk Management Using Frequency Ratio Model in District Charsadda, Pakistan. International Journal of Environment and Geoinformatics, 5(2), 140-153.
  • 24. Alahacoon, N., Matheswaran, K., Pani, P., Amarnath, G., 2018. A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001–2016) for Flood Hazard Mapping in Sri Lanka. Remote Sens., 2018(10), 448.
  • 25. Enea, A., Urzica, A., Breaban, I.G., 2018. Remote Sensing, GIS and HEC-RAS Techniques, Applied for Flood Extent Validation, Based on Landsat Imagery, LIDAR and Hydrological Data. Case Study: Baseu River, Romania. Journal of Environmental Protection and Ecology, 19(3), 1091-1101.
  • 26. Akgül, M.A., Çetin, M., 2019. Tarımsal Drenaj Alanlarında Meydana Gelen Taşkınlar ve Etki Alanlarının Uzaktan Algılama ile Belirlenmesi: Aşağı Seyhan Ovası Alt Havzasında Örnek Bir Çalışma. 10. Ulusal Hidroloji Kongresi, 9-12 Ekim 2019, Muğla.
  • 27. Bhattacharya, B., Mazzoleni, M., Ugay, R., 2019. Flood Inundation Mapping of the Sparsely Gauged Large-Scale Brahmaputra Basin Using Remote Sensing Products. Remote Sens., 11, 501.
  • 28. Güvel, Ş.P., Akgül, M.A., Aksu, H., 2022. Flood Inundation Maps Using Sentinel-2: a Case Study in Berdan Plain. Water Supply, 22(4), 4098-4108.
  • 29. Munasinghe, D., Cohen, S., Huang, Y., Tsang, Y., Zhang, J., Fang, Z., 2018. Intercomparison of Satellite Remote Sensing-Based Flood Inundation Mapping Techniques. Journal of the American Water Resources Association (JAWRA), 54(4), 834-846.
  • 30. Dash, P., Sar, J., 2020. Identification and Validation of Potential Flood Hazard Area Using GIS-based Multi-Criteria Analysis and Satellite Data-derived Water Index. J Flood Risk Management, 13(11), 1-14.
  • 31. DSİ, 1980. Seyhan Taşkın Raporu (27 Mart 1980-6 Nisan 1980), Ankara.
  • 32. IECO, 1966. Water Resources Development Ceyhan Basin Projects Seyhan Basin Projects Berdan Project Develi Project Amik Project Master Plan. May 1966, International Engineering Company, Inc. 74 New Montgomery St. San Fransisco 5, California.
  • 33. U.S. Geological Survey, 2016. Landsat-Earth observation satellites (ver. 1.2, April 2020): U.S. Geological Survey, Fact Sheet 2015–3081, 4.
  • 34. NASA, 2022. https://www.nasa.gov/mission_ pages/landsat/overview/index.html, Access date: 05.01.2022.
  • 35. Ogashawara, I., Curtarelli, M.P., Ferreira, C.M., 2013. The Use of Optical Remote Sensing For Mapping Flooded Areas. Int. Journal of Engineering Research and Application, 3(5), 1956-1960.
  • 36. Suwarsono, Nugroho, J.T., Wiweka, 2013. Identification of Inundated Area Using Normalized Difference Water Index (NDWI) on Lowland Region of Java Island. International Journal of Remote Sensing and Earth Sciences, 10(2), 114-121.
  • 37. Rotjanakusol, T., Laosuwan, T., 2018. Inundation Area Investigation Approach Using Remote Sensing Technology on 2017 Flooding in Sakon Nakhon Province Thailand. Studia Universitatis Vasile Goldis, Seria Stiintele Vietii (Life Sciences Series), 28(4), 159-166.
  • 38. Silas, M.Y., Taofeek, S.A., Adewale, A.K., Adeyemi, S.S., Victor, D., 2019. Flood Inundation and Monitoring Mapping in Nigeria Using Modis Surface Reflectance. Journal of Scientific Research & Reports, 22(1), 1-12.
  • 39. Kashyap, M., Bhatt, C.M., Rawat, J.S., Suthar, K., 2021. Application of Sentinel 2 Data for Extraction of Flood Inundation Along Ganga River, Bihar. International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE), 10(3), 47-52.
  • 40. McFeeters, S., 1996. The Use of Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. International Journal of Remote Sensing, 17(7), 1425-1432.
There are 40 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Articles
Authors

Şerife Güvel 0000-0002-3175-5938

Mehmet Ali Akgül 0000-0002-5517-9576

Recep Yurtal 0000-0003-3175-6567

Publication Date March 28, 2024
Published in Issue Year 2024 Volume: 39 Issue: 1

Cite

APA Güvel, Ş., Akgül, M. A., & Yurtal, R. (2024). Examining the Effects of a Flood Event in the Lower Ceyhan Basin in 1980 Using Historical Satellite Data. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(1), 85-93. https://doi.org/10.21605/cukurovaumfd.1459386