Research Article
BibTex RIS Cite

Improvement of Oil Agglomeration of Ilgin Lignite Coal by Ultrasonic Prosess

Year 2024, Volume: 39 Issue: 1, 107 - 117, 28.03.2024
https://doi.org/10.21605/cukurovaumfd.1459397

Abstract

In this study, the effect of the ultrasonic system on the oil agglomeration of lignite coal in the presence of waste sunflower oil was investigated. The effect of the power values and application time of the ultrasonic device on the ash content and combustible yield values of the coal suspension was determined. In this context, increasing the power value of the ultrasonic system had a positive effect on the ash values while negatively affecting the combustible yield values. The decrease in ash content was attributed to the cavitation effect of the ultrasonic device, while the decrease in combustible yield was attributed to changes in coal surfaces caused by the ultrasonic device, especially in terms of particle size. Additionally, applying the ultrasonic device for specific durations (1-3 min.) reduced the ash content and increased the combustible yield values. The best results were obtained with 90-Watt power value of ultrasonic process and 3 min. application time. Under optimal conditions, coal with an ash content of 18.39% was obtained with an efficiency of 55.59% in conventional experiments, while coal with an ash content of 10,02% with ultrasound pretreatment was obtained with an efficiency of 64.59%. These results showed that ultrasound pretreatment was an effective method for the enrichment of fine particle coal.

References

  • 1. Gürses, A., Doymuş, K., Bayrakçeken, S., 1996. Selective Oil Agglomeration of Brown Coal: A Systematic Investigation of the Design and Process Variables in the Conditioning Step. Fuel, 75(10), 1175-1180.
  • 2. Özer, M., Basha, O.M., Morsi, B., 2017. Coal-Agglomeration Pocesses: A review. International Journal of Coal Preparation and Utilization, 37(3), 31–167.
  • 3. Keller, Jr.D., Burry, W., 1987. An Investigation of a Separation Process Involving Liquid Water Coal Systems. Colloids and Surfaces, 22(1), 37-50.
  • 4. Capes, C., Jonasson, K., 1989. Application of Oil–Water Wetting of Coals in Beneficiation. Interfacial Phenomena in Coal Technology. Surfactant Science Series, (1nd ed.), 115-155.
  • 5. Petela, R., Ignasiak, B., Pawlak, W., 1995. Selective Agglomeration of Coal: Analysis of Laboratory Batch Test Results. Fuel, 74, 1200-1210.
  • 6. Cebeci, Y., Eroğlu, N., 1998. Determination of Bridging Liquid Type in Oil Agglomeration of Lignite. Fuel, 77, 419-424
  • 7. Ünal, İ., Aktaş, Z., 2001. Effect of Various Bridging Liquids on Coal Fines Agglomeration Performance. Fuel Processing Technology, 69, 141-55.
  • 8. Alonso, M.I., Valdés, A.F., Martinez-Tarazona, R.M., Garcia, A.B., 2002. Coal Recovery from Fines Cleaning Wastes by Agglomeration with Colza oil: A Contribution to the Environment and Energy Preservation. Fuel Processing Technology, 75, 85-95.
  • 9. Cebeci, Y., 2003. Investigation of Kinetics of Agglomerate Growth in Oil Agglomeration Process. Fuel, 82, 1645-1651.
  • 10. Yadav, A.M., Suresh, N., Sundaram, A., Painkra, P., Raja, A.K., Arsha, M.D., 2017. Investigation and Optimization of the Recovery of Coal Fines Using Oil Agglomeration Process: Use of Waste Oils from Different Sectors. Journal of Dispersion Science and Technology, 39(5), 754-764.
  • 11. Yadav, A.M, Singhal, H., Agarwal, D., Suman, S., 2021. Recovery of Energy Values from High-ash Content Washery Tailings Using Waste Oils by Oil Agglomeration. Separation Science and Technology,1-13.
  • 12. Eşmeli, K., 2023. Improvement of Lignite Oil Agglomeration by Ultrasound Process Using Waste Engine Oil. Particulate Science and Technology, 41(4), 544-554.
  • 13. Çelik, M.S., 1989. Effect of Ultrasonic Treatment on the Floatability of Coal and Galena. Separation Science and Technology, 24 (14), 1159-1166.
  • 14. Özkan, Ş.G., Kuyumcu, H.Z., 2006. Investigation of Mechanism of Ultrasound on Coal Flotation. International Journal Mineral Processing, 81(3), 201-203.
  • 15. Özkan, Ş.G., Kuyumcu, H.Z., 2007. Design of a Flotation Cell Equipped with Ultrasound Transducers to Enhance Coal Flotation. Ultrasonics Sonochemistry, 14(5), 639-645.
  • 16. Farmer, A.D, Collings, A.F, Jameson, G.J. 2000. Effect of Ultrasound on Surface Cleaning of Silica Particles. Int. J. Miner. Process., 60, 101-113.
  • 17. Özkan, Ş.G., Güngören, C., 2012. Enhancement of Colemanite Flotation by Ultrasonic Pre-treatment. Physicochem. Probl. Miner. Process., 48, 455-462.
  • 18. Videla, A.R, Morales, R., Saint-Jean, T., Gaete, L., Vargas, Y., Miller, J.D., 2016. Ultrasound Treatment on Tailings to Enhance Copper Flotation Recovery. Miner. Eng. 99, 89-95.
  • 19. Ghadyani, A., Noaparast, M., Ziaedin, S., Tonkaboni, S., 2017. A Study on the Effects of Ultrasonic Irradiation as Pretreatment Method on High-ash Coal Flotation and Kinetics a Study on the Effects of Ultrasonic Irradiation as Pretreatment Method on High-ash Coal flotation and Kinetics. Int J Coal Prep Util, 38(7), 374-391.
  • 20. Cao, Q., Cheng, J., Feng, Q., Wen, S., Luo, B., 2017. Surface Cleaning and Oxidative Effects of Ultrasonication on the Flotation of Oxidized Pyrite. Powder Technol., 311, 390-397.
  • 21. Peng, Y., Mao, Y., Xia, W., Li, Y., 2018. Ultrasonic Flotation Cleaning of High-ash Lignite and its Mechanism. Fuel, 220, 558-566.
  • 22. Mao,Y., Peng., Bu, X., Xie, G., Wu, E., Xia, W., 2018. Effects of Ultrasound on the True Flotation of Lignite and its Entrainment Behavior. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40, 940-950.
  • 23. Güngören, C., Özdemir, O., Wang, X., Özkan, Ş.G., Miller, J., 2019. Effect of Ultrasound on Bubble-Particle Interaction in Quartz-Amine Fotation System. Ultrason. Sonochem, 52, 446-454.
  • 24. Güngören, C., Baktarhan, Y., Demir, İ., Özkan, Ş.G., 2020. Enhancement of Galena-Potassium Ethyl Xnthate Flotation System by Low Power Ultrasound. Trans. Nonferrous Met. Soc. China, 30, 1102-1110.
  • 25. Çilek, E.C, Özgen, S., 2009. Effect of Ultrasound on Separation Selectivity and Efficiency of Flotation. Miner. Eng., 22, 1209-1217.
  • 26. Mao, Y., Bu, X., Peng, Y., Tian, F., Xie, G., 2020. Effects of Simultaneous Ultrasonic Treatment on the Separation Selectivity and Flotation Kinetics of High-ash Lignite. Fuel, 259(1), 116270.
  • 27. Altun, N.E, Hwang, J.Y, Hiçyilmaz, C., 2009. Enhancement of Flotation Performance of Oil Shale Cleaning by Ultrasonic Treatment. Int. J. Miner. Process., 91(1-2), 1-13.
  • 28. Özkan, Ş.G., 2012. Effects of Simultaneous Ultrasonic Treatment on Flotation of Hard Coal Slimes. Fuel, 93, 576-580.
  • 29. Xu, M., Xing, Y., Gui, X., Cao, Y., Wang, D., Wang, L., 2017. Effect of Ultrasonic Pretreatment on Oxidized Coal Flotation. Energy Fuels, 31, 14367-14373.
  • 30. Mao, Y., Xia, W., Peng, Y., Xie, G., 2019a. Ultrasonic-Assisted Flotation of Fine Coal: A Review. Fuel Process. Technol., 195, 106150.
  • 31. Mao, Y., Chen, Y., Bu, X., Xie, G., 2019b. Effects of 20 kHz Ultrasound on Coal Flotation: The Roles of Cavitation and Acoustic Radiation Force. Fuel, 256, 115938.
  • 32. Yasuda, K., Matsushima, H., Asakura, Y., 2019. Generation and Reduction of Bulk Nanobubbles by Ultrasonic Irradiation. Chem Eng. Sci., 195, 455-461.
  • 33. Jin, L., Wang, W., Tu, Y., Zhang, K., Lv, Z., 2021. Effect of Ultrasonic Standing Waves on Flotation Bubbles. Ultrasonics Sonochemistry, 73, 105459.
  • 34. ASTM D 3173–03, 2010. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke, 3.
  • 35. ASTM D 3174–04, 2010. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal, 5.
  • 36. ASTM D 5865–10a, 2010. Standard Test Method for Gross Calorific Value of Coal and Coke, 14.
  • 37. Vargas, E.M., Neves, M.C., Tarelho, L.A.C., Nunes, M.I., 2019. Solid Catalysts Obtained from Wastes for Fame Production Using Mixtures of Refined Palm Oil and Waste Cooking Oils. Renewable Energy, 136, 873-883.
  • 38. Shen, M., 1999. Development and Scale-up of Particle Agglomeration Processes for Coal Beneficiation. PhD. Thesis, Iowa State University, Ames, Iowa,167
  • 39. Toraman, Ö.Y., 2017. Experimental Investigations of Preparation of Calcite Particles by Ultrasonic Treatment. Physicochem Prob. Miner. Process., 53, 859-68.
  • 40. Barma, S.D., 2019. Ultrasonic-assisted coal beneficiation: A Review. Ultrason. Sonochem. 50, 15-35.
  • 41. Şahinoglu, E., Uslu, T., 2013a. Increasing Coal Quality by Oil Agglomeration After Ultrasonic Treatment. Fuel Processing Technology, 116, 332-338.
  • 42. Şahinoglu, E., Uslu, T., 2013b. Use of Ultrasonic Emulsification in Oil Agglomeration for Coal Cleaning. Fuel, 113.
  • 43. Chen, Y., Truong, V.N.T, Bu, X, Xie G., 2020. A Review of Effects and Applications of Ultrasound in Mineral Flotation. Ultrason. Sonochem, 60, 104739.
  • 44. Hassanzadeh, A., Sajjady, S.A., Gholami, H., Amini, S., Özkan, Ş.G., 2020. An Improvement on Selective Separation by Applying Ultrasound to Rougher and Re-cleaner Stages of Copper Flotation. Minerals, 10(7), 619.
  • 45. Özkan, Ş.G., 2017. Further Investigations on Simultaneous Ultrasonic Coal Flotation. Minerals, 7(10), 177.
  • 46. De Castro, M.L., Priego-Capote, F., 2007. Ultrasound-Assisted Crystallization (Sonocrystallization). Ultrason. Sonochem, 14, 717-724.
  • 47. Eşmeli, K., 2023. The Effect of Ultrasound Treatment on Oil Agglomeration of Barite. Mineral Processing and Extractive Metallurgy Review, 44(3), 189-200
  • 48. Ambedkar, B., Chintala, T.N., Nagarajan, R., Jayanti, S., 2011a. Feasibility of Using Ultrasound Assisted Process for Sulfur and Ash Removal from Coal. Chem. Eng. Process., 50(3), 236-246.
  • 49. Kang, W., Xun, H., Chen, J., 2007. Study of Enhanced Fine Coal De-Sulphurization and De-Ashing by Ultrasonic Flotation. Journal of China University of Mining and Technology, 17(3), 358-362.
  • 50. Yazıcı, E.Y., Deveci, H., Alp, İ., Uslu, T., 2007. Generation of Hydrogen Peroxide and Removal of Cyanide from Solutions Using Ultrasonic Waves. Desalination, 216(1-3), 209-221.
  • 51. Şahinoglu, E., Uslu, T., 2008. Amenability of Muzret Bituminous Coal to Oil Agglomeration. Energy Convers Manage, 49, 3684-3690.
  • 52. Royaei, M.M., Jorjani, E., Chelgani, S.C., 2012. Combination of Microwave and Ultrasonic Irradiations as a Pretreatment Method to Produce Ultraclean Coal. Int J Coal Prep Util, 32, 143-155.
  • 53. Zhang, H.X., Bai, H.J., Dong, X.S., Wang, Z.Z., 2012. Enhanced Dsulfurizing Flotation of Different Size Fractions of High Sulfur Coal using Sono Electrochemical Method. Fuel Process. Technol., 97, 9-14.
  • 54. Cebeci, Y., Sönmez, İ., 2002. The Investigation of Coal-Pyrite/Lignite Concentration and their Separation in the Artificial Mixture by Oil Agglomeration. Fuel, 81, 1139-1146.
  • 55. Cebeci, Y., Sönmez, İ., 2006. Application of the Box-Wilson Experimental Design Method for the Spherical Oil Agglomeration of Coal. Fuel, 85, 289-297.

Ilgın Linyit Kömürünün Yağ Aglomerasyonunun Ultrasonik Proses ile İyileştirilmesi

Year 2024, Volume: 39 Issue: 1, 107 - 117, 28.03.2024
https://doi.org/10.21605/cukurovaumfd.1459397

Abstract

Bu çalışmada, ultrasonik sistemin ılgın linyit kömürünün yağ aglomerasyonu üzerine etkisi incelenmiştir. Ultrasonik cihazının uygulanma güç değerleri ve süresinin kömür süspansiyonunun kül içeriği ve yanabilir verim değerleri üzerindeki etkisi belirlenmiştir. Bu bağlamda ultrasonik sistemin güç değerinin artması kül değerleri üzerinde olumlu bir etki yaratırken, yanabilir verim değerlerini ise negatif yönde etkilemiştir. Kül içeriğindeki azalma ultrasonik cihazın kavitasyon etkisine bağlanırken, yanabilir verimdeki azalma ultrasonik cihazın kömür yüzeylerinde yarattığı değişime bağlanmıştır. Ayrıca, ultrasonik cihazın belirli bir sürelerde uygulanması (1-3 dakika) kül içeriğini azaltmış, yanabilir verim değerlerini artırmıştır. En iyi sonuçlar ultrasonik işlemin 90 Watt güç değerinde ve 3 dakika uygulanma süresi ile elde edilmiştir. Optimum koşullar altında, geleneksel deneylerde %55,59 verimlilikle %18,39 kül içeriğine sahip kömür elde edilirken, ultrason ön işlemiyle%10,02 kül içeriğine sahip kömür %64,59 verimlilikle elde edilmiştir. Bu sonuçlar, ultrasonik ön işlemin ince taneli kömürün zenginleştirilmesinde etkili bir yöntem olabileceğini göstermiştir.

References

  • 1. Gürses, A., Doymuş, K., Bayrakçeken, S., 1996. Selective Oil Agglomeration of Brown Coal: A Systematic Investigation of the Design and Process Variables in the Conditioning Step. Fuel, 75(10), 1175-1180.
  • 2. Özer, M., Basha, O.M., Morsi, B., 2017. Coal-Agglomeration Pocesses: A review. International Journal of Coal Preparation and Utilization, 37(3), 31–167.
  • 3. Keller, Jr.D., Burry, W., 1987. An Investigation of a Separation Process Involving Liquid Water Coal Systems. Colloids and Surfaces, 22(1), 37-50.
  • 4. Capes, C., Jonasson, K., 1989. Application of Oil–Water Wetting of Coals in Beneficiation. Interfacial Phenomena in Coal Technology. Surfactant Science Series, (1nd ed.), 115-155.
  • 5. Petela, R., Ignasiak, B., Pawlak, W., 1995. Selective Agglomeration of Coal: Analysis of Laboratory Batch Test Results. Fuel, 74, 1200-1210.
  • 6. Cebeci, Y., Eroğlu, N., 1998. Determination of Bridging Liquid Type in Oil Agglomeration of Lignite. Fuel, 77, 419-424
  • 7. Ünal, İ., Aktaş, Z., 2001. Effect of Various Bridging Liquids on Coal Fines Agglomeration Performance. Fuel Processing Technology, 69, 141-55.
  • 8. Alonso, M.I., Valdés, A.F., Martinez-Tarazona, R.M., Garcia, A.B., 2002. Coal Recovery from Fines Cleaning Wastes by Agglomeration with Colza oil: A Contribution to the Environment and Energy Preservation. Fuel Processing Technology, 75, 85-95.
  • 9. Cebeci, Y., 2003. Investigation of Kinetics of Agglomerate Growth in Oil Agglomeration Process. Fuel, 82, 1645-1651.
  • 10. Yadav, A.M., Suresh, N., Sundaram, A., Painkra, P., Raja, A.K., Arsha, M.D., 2017. Investigation and Optimization of the Recovery of Coal Fines Using Oil Agglomeration Process: Use of Waste Oils from Different Sectors. Journal of Dispersion Science and Technology, 39(5), 754-764.
  • 11. Yadav, A.M, Singhal, H., Agarwal, D., Suman, S., 2021. Recovery of Energy Values from High-ash Content Washery Tailings Using Waste Oils by Oil Agglomeration. Separation Science and Technology,1-13.
  • 12. Eşmeli, K., 2023. Improvement of Lignite Oil Agglomeration by Ultrasound Process Using Waste Engine Oil. Particulate Science and Technology, 41(4), 544-554.
  • 13. Çelik, M.S., 1989. Effect of Ultrasonic Treatment on the Floatability of Coal and Galena. Separation Science and Technology, 24 (14), 1159-1166.
  • 14. Özkan, Ş.G., Kuyumcu, H.Z., 2006. Investigation of Mechanism of Ultrasound on Coal Flotation. International Journal Mineral Processing, 81(3), 201-203.
  • 15. Özkan, Ş.G., Kuyumcu, H.Z., 2007. Design of a Flotation Cell Equipped with Ultrasound Transducers to Enhance Coal Flotation. Ultrasonics Sonochemistry, 14(5), 639-645.
  • 16. Farmer, A.D, Collings, A.F, Jameson, G.J. 2000. Effect of Ultrasound on Surface Cleaning of Silica Particles. Int. J. Miner. Process., 60, 101-113.
  • 17. Özkan, Ş.G., Güngören, C., 2012. Enhancement of Colemanite Flotation by Ultrasonic Pre-treatment. Physicochem. Probl. Miner. Process., 48, 455-462.
  • 18. Videla, A.R, Morales, R., Saint-Jean, T., Gaete, L., Vargas, Y., Miller, J.D., 2016. Ultrasound Treatment on Tailings to Enhance Copper Flotation Recovery. Miner. Eng. 99, 89-95.
  • 19. Ghadyani, A., Noaparast, M., Ziaedin, S., Tonkaboni, S., 2017. A Study on the Effects of Ultrasonic Irradiation as Pretreatment Method on High-ash Coal Flotation and Kinetics a Study on the Effects of Ultrasonic Irradiation as Pretreatment Method on High-ash Coal flotation and Kinetics. Int J Coal Prep Util, 38(7), 374-391.
  • 20. Cao, Q., Cheng, J., Feng, Q., Wen, S., Luo, B., 2017. Surface Cleaning and Oxidative Effects of Ultrasonication on the Flotation of Oxidized Pyrite. Powder Technol., 311, 390-397.
  • 21. Peng, Y., Mao, Y., Xia, W., Li, Y., 2018. Ultrasonic Flotation Cleaning of High-ash Lignite and its Mechanism. Fuel, 220, 558-566.
  • 22. Mao,Y., Peng., Bu, X., Xie, G., Wu, E., Xia, W., 2018. Effects of Ultrasound on the True Flotation of Lignite and its Entrainment Behavior. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40, 940-950.
  • 23. Güngören, C., Özdemir, O., Wang, X., Özkan, Ş.G., Miller, J., 2019. Effect of Ultrasound on Bubble-Particle Interaction in Quartz-Amine Fotation System. Ultrason. Sonochem, 52, 446-454.
  • 24. Güngören, C., Baktarhan, Y., Demir, İ., Özkan, Ş.G., 2020. Enhancement of Galena-Potassium Ethyl Xnthate Flotation System by Low Power Ultrasound. Trans. Nonferrous Met. Soc. China, 30, 1102-1110.
  • 25. Çilek, E.C, Özgen, S., 2009. Effect of Ultrasound on Separation Selectivity and Efficiency of Flotation. Miner. Eng., 22, 1209-1217.
  • 26. Mao, Y., Bu, X., Peng, Y., Tian, F., Xie, G., 2020. Effects of Simultaneous Ultrasonic Treatment on the Separation Selectivity and Flotation Kinetics of High-ash Lignite. Fuel, 259(1), 116270.
  • 27. Altun, N.E, Hwang, J.Y, Hiçyilmaz, C., 2009. Enhancement of Flotation Performance of Oil Shale Cleaning by Ultrasonic Treatment. Int. J. Miner. Process., 91(1-2), 1-13.
  • 28. Özkan, Ş.G., 2012. Effects of Simultaneous Ultrasonic Treatment on Flotation of Hard Coal Slimes. Fuel, 93, 576-580.
  • 29. Xu, M., Xing, Y., Gui, X., Cao, Y., Wang, D., Wang, L., 2017. Effect of Ultrasonic Pretreatment on Oxidized Coal Flotation. Energy Fuels, 31, 14367-14373.
  • 30. Mao, Y., Xia, W., Peng, Y., Xie, G., 2019a. Ultrasonic-Assisted Flotation of Fine Coal: A Review. Fuel Process. Technol., 195, 106150.
  • 31. Mao, Y., Chen, Y., Bu, X., Xie, G., 2019b. Effects of 20 kHz Ultrasound on Coal Flotation: The Roles of Cavitation and Acoustic Radiation Force. Fuel, 256, 115938.
  • 32. Yasuda, K., Matsushima, H., Asakura, Y., 2019. Generation and Reduction of Bulk Nanobubbles by Ultrasonic Irradiation. Chem Eng. Sci., 195, 455-461.
  • 33. Jin, L., Wang, W., Tu, Y., Zhang, K., Lv, Z., 2021. Effect of Ultrasonic Standing Waves on Flotation Bubbles. Ultrasonics Sonochemistry, 73, 105459.
  • 34. ASTM D 3173–03, 2010. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke, 3.
  • 35. ASTM D 3174–04, 2010. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal, 5.
  • 36. ASTM D 5865–10a, 2010. Standard Test Method for Gross Calorific Value of Coal and Coke, 14.
  • 37. Vargas, E.M., Neves, M.C., Tarelho, L.A.C., Nunes, M.I., 2019. Solid Catalysts Obtained from Wastes for Fame Production Using Mixtures of Refined Palm Oil and Waste Cooking Oils. Renewable Energy, 136, 873-883.
  • 38. Shen, M., 1999. Development and Scale-up of Particle Agglomeration Processes for Coal Beneficiation. PhD. Thesis, Iowa State University, Ames, Iowa,167
  • 39. Toraman, Ö.Y., 2017. Experimental Investigations of Preparation of Calcite Particles by Ultrasonic Treatment. Physicochem Prob. Miner. Process., 53, 859-68.
  • 40. Barma, S.D., 2019. Ultrasonic-assisted coal beneficiation: A Review. Ultrason. Sonochem. 50, 15-35.
  • 41. Şahinoglu, E., Uslu, T., 2013a. Increasing Coal Quality by Oil Agglomeration After Ultrasonic Treatment. Fuel Processing Technology, 116, 332-338.
  • 42. Şahinoglu, E., Uslu, T., 2013b. Use of Ultrasonic Emulsification in Oil Agglomeration for Coal Cleaning. Fuel, 113.
  • 43. Chen, Y., Truong, V.N.T, Bu, X, Xie G., 2020. A Review of Effects and Applications of Ultrasound in Mineral Flotation. Ultrason. Sonochem, 60, 104739.
  • 44. Hassanzadeh, A., Sajjady, S.A., Gholami, H., Amini, S., Özkan, Ş.G., 2020. An Improvement on Selective Separation by Applying Ultrasound to Rougher and Re-cleaner Stages of Copper Flotation. Minerals, 10(7), 619.
  • 45. Özkan, Ş.G., 2017. Further Investigations on Simultaneous Ultrasonic Coal Flotation. Minerals, 7(10), 177.
  • 46. De Castro, M.L., Priego-Capote, F., 2007. Ultrasound-Assisted Crystallization (Sonocrystallization). Ultrason. Sonochem, 14, 717-724.
  • 47. Eşmeli, K., 2023. The Effect of Ultrasound Treatment on Oil Agglomeration of Barite. Mineral Processing and Extractive Metallurgy Review, 44(3), 189-200
  • 48. Ambedkar, B., Chintala, T.N., Nagarajan, R., Jayanti, S., 2011a. Feasibility of Using Ultrasound Assisted Process for Sulfur and Ash Removal from Coal. Chem. Eng. Process., 50(3), 236-246.
  • 49. Kang, W., Xun, H., Chen, J., 2007. Study of Enhanced Fine Coal De-Sulphurization and De-Ashing by Ultrasonic Flotation. Journal of China University of Mining and Technology, 17(3), 358-362.
  • 50. Yazıcı, E.Y., Deveci, H., Alp, İ., Uslu, T., 2007. Generation of Hydrogen Peroxide and Removal of Cyanide from Solutions Using Ultrasonic Waves. Desalination, 216(1-3), 209-221.
  • 51. Şahinoglu, E., Uslu, T., 2008. Amenability of Muzret Bituminous Coal to Oil Agglomeration. Energy Convers Manage, 49, 3684-3690.
  • 52. Royaei, M.M., Jorjani, E., Chelgani, S.C., 2012. Combination of Microwave and Ultrasonic Irradiations as a Pretreatment Method to Produce Ultraclean Coal. Int J Coal Prep Util, 32, 143-155.
  • 53. Zhang, H.X., Bai, H.J., Dong, X.S., Wang, Z.Z., 2012. Enhanced Dsulfurizing Flotation of Different Size Fractions of High Sulfur Coal using Sono Electrochemical Method. Fuel Process. Technol., 97, 9-14.
  • 54. Cebeci, Y., Sönmez, İ., 2002. The Investigation of Coal-Pyrite/Lignite Concentration and their Separation in the Artificial Mixture by Oil Agglomeration. Fuel, 81, 1139-1146.
  • 55. Cebeci, Y., Sönmez, İ., 2006. Application of the Box-Wilson Experimental Design Method for the Spherical Oil Agglomeration of Coal. Fuel, 85, 289-297.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Mining Engineering (Other)
Journal Section Articles
Authors

Kiraz Eşmeli 0000-0001-5699-5199

Publication Date March 28, 2024
Submission Date March 5, 2024
Acceptance Date March 28, 2024
Published in Issue Year 2024 Volume: 39 Issue: 1

Cite

APA Eşmeli, K. (2024). Ilgın Linyit Kömürünün Yağ Aglomerasyonunun Ultrasonik Proses ile İyileştirilmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(1), 107-117. https://doi.org/10.21605/cukurovaumfd.1459397