Research Article
BibTex RIS Cite

Inception and Squeeze-Excitation Network Based Deep Learning Model for Classification of Alzheimer's Disease from MRI Images

Year 2024, Volume: 39 Issue: 2, 555 - 567, 11.07.2024
https://doi.org/10.21605/cukurovaumfd.1514656

Abstract

Alzheimer's disease (AD) is a progressive brain disorder, the leading cause of dementia in older adults. Early identification is vital, as treatment is more effective in the disease's initial stages. Deep learning techniques have proven to be effective in medical imaging, including AD detection. This study introduces a novel method for AD classification from MRI images, combining an Inception module and a squeeze-and-excitation block. The Inception module increases convolutional neural network accuracy by using multiple parallel convolutions at different scales. The squeeze-and-excitation block enhances performance with minimal added parameters. The experimental results on the four-class Kaggle dataset yielded an accuracy of 98.28%. Comparisons with recent studies in the literature clearly demonstrate the success of the proposed method in classifying AD with high accuracy. This approach holds promise for accurately classifying AD from medical images, enabling earlier diagnosis and intervention.

References

  • 1. Dadar, M., Pascoal, T.A., Manitsirikul, S., 2017. Validation of a Regression Technique for Segmentation of White Matter Hyperintensities in Alzheimer’s Disease. IEEE Transactions on Medical Imaging, 36, 1758-1768.
  • 2. Livingston, G., Sommerlad, A., Orgeta, V., 2017. Dementia Prevention, Intervention, and Care. Lancet, 390, 2673-2734.
  • 3. Ahmed, G., Er, M.J., Muhammad, M., 2022. DAD-Net : Classification of Alzheimer’s Disease Using Neural Network. Molecules, 27, 1-21
  • 4. Tufail, Bin A., Ma, Y.K., Zhang, Q.N., 2020 Binary Classification of Alzheimer’s Disease Using sMRI Imaging Modality and Deep Learning. Journal of Digital Imaging, 33, 1073-1090.
  • 5. Tiwari, S., Venkata, A., Kaushik, A., 2019. Alzheimer’s Disease Diagnostics and Therapeutics Market. International Journal of Nanomedicine, 14, 5541-5554
  • 6. Loddo, A., Buttau, S., Di Ruberto, C., 2022. Deep Learning Based Pipelines for Alzheimer’s Disease Diagnosis: A Comparative Study and a Novel Deep-ensemble Method. Computers in Biology and Medicine, 141, 105032.
  • 7. El-Latif, A.A.A., Chelloug, S.A, Alabdulhafith, M., Hammad, M., 2023. Accurate Detection of Alzheimer’s Disease Using Lightweight Deep Learning Model on MRI Data. Diagnostics, 13, 1-21.
  • 8. Bangyal, W.H., Rehman, N.U., Nawaz, A., 2022. Constructing Domain Ontology for Alzheimer Disease Using Deep Learning Based Approach. Electronics, 11.
  • 9. Balasundaram, A., Srinivasan, S., Prasad, A., 2023. Hippocampus Segmentation-Based Alzheimer’s Disease Diagnosis and Classification of MRI Images. Arabian Journal for Science and Engineering, 48, 10249- 10265.
  • 10. Mohammed, B.A., Senan, E.M., Rassem, T.H., 2021. Multi-method Analysis of Medical Records and Mri Images for Early Diagnosis of Dementia and Alzheimer’s Disease Based on Deep Learning and Hybrid Methods. Electronics, 10, 1-20.
  • 11. Murugan, S., Venkatesan, C., Sumithra, M.G., 2021. DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia from MR Images. IEEE Access, 9, 90319-90329.
  • 12. Kumar, S., 2021. Alzheimer MRI Preprocessed Dataset. https://www.kaggle.com/datasets/ sachinkumar413/alzheimer-mri-dataset. Access date: 12 October 2023.
  • 13. Fırat, H., Emin, M., Mehmet, A., Hanbay, D., 2022 Hybrid 3D/2D Complete Inception Module and Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification. Neural Process Letters, 1-44.
  • 14. Szegedy, C., Liu, W., Jia, Y., 2015. Going Deeper with Convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 1-9.
  • 15. Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-Excitation Networks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognition, 7132-7141.
  • 16. Fırat, H., 2023. Classification of White Blood Cells Using the Squeeze-Excitation Residual Network. Bilişim Teknolojileri Dergisi, 16, 189-205.
  • 17. Asker, M.E., 2023. Hyperspectral Image Classification Method Based on Squeeze-and-Excitation Networks, Depthwise Separable Convolution and Multibranch Feature Fusion. Earth Science Informatics, 1427- 1448.

MR Görüntülerinden Alzheimer Hastalığının Sınıflandırılması için Inception ve Sıkma-Uyarma Ağı Tabanlı Derin Öğrenme Modeli

Year 2024, Volume: 39 Issue: 2, 555 - 567, 11.07.2024
https://doi.org/10.21605/cukurovaumfd.1514656

Abstract

Alzheimer hastalığı (AH) ilerleyici bir beyin hastalığıdır ve yaşlı yetişkinlerde demansın önde gelen nedenidir. Hastalığın ilk aşamalarında tedavi daha etkili olduğu için erken teşhis hayati önem taşımaktadır. Derin öğrenme tekniklerinin, AH tespiti de dahil olmak üzere tıbbi görüntülemede etkili olduğu kanıtlanmıştır. Bu çalışmada, manyetik rezonans görüntüleme görüntülerinden AH sınıflandırması için bir Inception modülü ile bir sıkma ve uyarma bloğunu birleştiren yeni bir yöntem tanıtılmaktadır. Inception modülü, farklı ölçeklerde çoklu paralel evrişimler kullanarak evrişimsel sinir ağı doğruluğunu arttırmaktadır. Sıkma ve uyarma bloğu, minimum ek parametre ile performansı arttırmaktadır. Dört sınıflı Kaggle veri seti üzerindeki deneysel sonuçlar ile %98,28'lik bir doğruluk değeri elde edilmiştir. Literatürdeki son çalışmalarla yapılan karşılaştırmalar, önerilen yöntemin AH'yi yüksek doğrulukla sınıflandırmadaki başarısını açıkça göstermektedir. Bu yaklaşım, tıbbi görüntülerden AH'yi doğru bir şekilde sınıflandırarak daha erken teşhis ve müdahaleye olanak sağlama konusunda umut vaat etmektedir.

References

  • 1. Dadar, M., Pascoal, T.A., Manitsirikul, S., 2017. Validation of a Regression Technique for Segmentation of White Matter Hyperintensities in Alzheimer’s Disease. IEEE Transactions on Medical Imaging, 36, 1758-1768.
  • 2. Livingston, G., Sommerlad, A., Orgeta, V., 2017. Dementia Prevention, Intervention, and Care. Lancet, 390, 2673-2734.
  • 3. Ahmed, G., Er, M.J., Muhammad, M., 2022. DAD-Net : Classification of Alzheimer’s Disease Using Neural Network. Molecules, 27, 1-21
  • 4. Tufail, Bin A., Ma, Y.K., Zhang, Q.N., 2020 Binary Classification of Alzheimer’s Disease Using sMRI Imaging Modality and Deep Learning. Journal of Digital Imaging, 33, 1073-1090.
  • 5. Tiwari, S., Venkata, A., Kaushik, A., 2019. Alzheimer’s Disease Diagnostics and Therapeutics Market. International Journal of Nanomedicine, 14, 5541-5554
  • 6. Loddo, A., Buttau, S., Di Ruberto, C., 2022. Deep Learning Based Pipelines for Alzheimer’s Disease Diagnosis: A Comparative Study and a Novel Deep-ensemble Method. Computers in Biology and Medicine, 141, 105032.
  • 7. El-Latif, A.A.A., Chelloug, S.A, Alabdulhafith, M., Hammad, M., 2023. Accurate Detection of Alzheimer’s Disease Using Lightweight Deep Learning Model on MRI Data. Diagnostics, 13, 1-21.
  • 8. Bangyal, W.H., Rehman, N.U., Nawaz, A., 2022. Constructing Domain Ontology for Alzheimer Disease Using Deep Learning Based Approach. Electronics, 11.
  • 9. Balasundaram, A., Srinivasan, S., Prasad, A., 2023. Hippocampus Segmentation-Based Alzheimer’s Disease Diagnosis and Classification of MRI Images. Arabian Journal for Science and Engineering, 48, 10249- 10265.
  • 10. Mohammed, B.A., Senan, E.M., Rassem, T.H., 2021. Multi-method Analysis of Medical Records and Mri Images for Early Diagnosis of Dementia and Alzheimer’s Disease Based on Deep Learning and Hybrid Methods. Electronics, 10, 1-20.
  • 11. Murugan, S., Venkatesan, C., Sumithra, M.G., 2021. DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia from MR Images. IEEE Access, 9, 90319-90329.
  • 12. Kumar, S., 2021. Alzheimer MRI Preprocessed Dataset. https://www.kaggle.com/datasets/ sachinkumar413/alzheimer-mri-dataset. Access date: 12 October 2023.
  • 13. Fırat, H., Emin, M., Mehmet, A., Hanbay, D., 2022 Hybrid 3D/2D Complete Inception Module and Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification. Neural Process Letters, 1-44.
  • 14. Szegedy, C., Liu, W., Jia, Y., 2015. Going Deeper with Convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 1-9.
  • 15. Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-Excitation Networks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognition, 7132-7141.
  • 16. Fırat, H., 2023. Classification of White Blood Cells Using the Squeeze-Excitation Residual Network. Bilişim Teknolojileri Dergisi, 16, 189-205.
  • 17. Asker, M.E., 2023. Hyperspectral Image Classification Method Based on Squeeze-and-Excitation Networks, Depthwise Separable Convolution and Multibranch Feature Fusion. Earth Science Informatics, 1427- 1448.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Artificial Intelligence (Other)
Journal Section Articles
Authors

Hüseyin Fırat 0000-0002-1257-8518

Hüseyin Üzen 0000-0002-0998-2130

Publication Date July 11, 2024
Submission Date November 8, 2023
Acceptance Date June 27, 2024
Published in Issue Year 2024 Volume: 39 Issue: 2

Cite

APA Fırat, H., & Üzen, H. (2024). MR Görüntülerinden Alzheimer Hastalığının Sınıflandırılması için Inception ve Sıkma-Uyarma Ağı Tabanlı Derin Öğrenme Modeli. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(2), 555-567. https://doi.org/10.21605/cukurovaumfd.1514656