Research Article
BibTex RIS Cite

A New Approach for Improving Flame Retardancy of Automotive Interior Upholstery

Year 2024, Volume: 39 Issue: 3, 577 - 584, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1559895

Abstract

This study presents the flame retardant (FR) performance of chemically treated automotive upholstery fabrics using two different impregnation methods of Resin Transfer Molding (RTM) and supercritical carbon dioxide (scCO2). Referring to the related standards, untreated seat fabric obtained from seat upholstery of a bus (neat fabric, NF) and treated fabric samples underwent burning rate (BR) and limiting oxygen index (LOI) tests to compare effect of treatment and impregnation methods on FR performance. Thermal analysis was also conducted on the samples considering onset degradation temperatures and char yields. The results showed that BR and LOI of all samples were in acceptable range and treatment provided enhancement in FR performance of NF. The treated sample using scCO2 method gave the highest LOI value of 32% and the lowest BR of 21 mm/min subtending to 18.5% increase in LOI and 30% reduction in BR compared to those of NF. The performance of treatment in RTM was worse than that of scCO2 and better than that of NF. The results confirm that both treatment and methods used in this study give promising results for safety against fire in transportation vehicles.

References

  • 1. Kundu, C.K., Li, Z., Song, L., Hu, Y., 2020. An overview of fire retardant treatments for synthetic textiles: From traditional approaches to recent applications. European Polymer Journal 137, 109911.
  • 2. Younis, A.A., 2017. Protection of polyester fabric from ignition by a new chemical modification method. Journal of Industrial Textiles, 47(3), 363-376.
  • 3. Parvinzadeh, M., Ebrahimi, I., 2011. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone. Applied Surface Science, 257(9), 4062-4068.
  • 4. Islam, S., 2008. Development of automotive textiles with antiodour/antimicrobial properties. MSc thesis, RMIT University, 104.
  • 5. Kamath, M.G., Bhat, G.S., Parikh, D.V., Mueller, D., 2005. Cotton fiber nonwovens for automotive composites. International Nonwovens Journal, 14, 34-40.
  • 6. Singha, K., 2012. Strategies for in automobile: strategies for using automotive textiles-manufacturing techniques and applications. Journal of Safety Engineering, 1(1), 7-16..
  • 7. Başyiǧit, Z.Ö., 2019. Improvement of multifunctional automotive textile. Tekstil ve Konfeksiyon, 29(2): 113-20.
  • 8. Mezarcıöz, S., Mezarcıöz, S., Oğulata, R.T., 2018. Teknik tekstiller-otobüs koltuk döşemelerinde kullanımı ve uygulanan test yöntemleri. Tekstil ve Mühendis, (82), 36-41.
  • 9. Vietro, N. De., Belforte, L., Lambertini, V., Placenza, B., Fracassi, F., 2015. Plasma treatment for preparing durable water repellent and anti-stain synthetic fabrics for automotive applications. Journal of Surface Engineered Materials and Advanced Technology, 5(3), 103-109.
  • 10. MecCait, D., Ilgaz, S., Duran, D., Başal, G., Gülümser, T., Tarakçıoğlı, I., 2007. Teknik teksti̇ller ve kullanım alanları (Bölüm 2). Tekstil ve Konfeksiyon, 2, 79-82.
  • 11. Conway, R., 2016. Coating of textiles (Chapter 8). Handbook of Technical Textiles. 2nd edition, Horrocks, A.R., Anand, S. C. (editors), Woodhead Publishing Series, 211-229.
  • 12. Toprakkaya, D., Orhan, M., Güneşoğlu C., 2002. Polyester esaslı farklı yapıdaki otomotiv koltuk döşeme kumaş özelliklerinin karşılaştırılması. Otomotiv Teknolojileri Kongresi, Bursa.
  • 13. Walter, F., Mike H., 2001. Product engineering–interior trim. Textiles in Automotive Engineering, Walter, F., Mike H. (editors), Woodhead Publishing Series, 194-226.
  • 14. Singha, K., 2012. A Review on coating & lamination in textiles: processes and applications. American Journal of Polymer Science, 2(3), 39-49.
  • 15. Doba Kadem, F., Ergen, A., 2011. Investigation of some comfort properties of fabrics laminated with different types of membranes. Tekstil ve Konfeksiyon, 21(4), 323-7.
  • 16. Bulut, Y., Sülar, V., 2010. Kaplama veya lami̇nasyo tekni̇kleri̇ ı̇le üreti̇len kumaşların genel özelli̇kleri̇ ve performans testleri̇. The Journal of Textiles and Engineers, 6(16), 70-71.
  • 17. Schwarz, I.G., Kovačević, S., Kos, I., 2015. Physical-mechanical properties of automotive textile materials. Journal of Industrial Textiles, 45(3), 323-337.
  • 18. Bradshaw, H., 1927. Coated textiles. Industrial and Engineering Chemistry, 19(10), 1109-1110.
  • 19. Ekici, B., Kentli, A., Küçük, H., 2012. Improving sound absorption property of polyurethane foams by adding tea-leaf fibers. Archives of Acoustics, 37(4), 515-520.
  • 20. Li, Y.Z., 2019. Study of fire and explosion hazards of alternative fuel vehicles in tunnels. Fire Safety Journal, 110, 102871.
  • 21. Didane, N., Giraud, S., Devaux, E., 2012. Fire performances comparison of back coating and melt spinning approaches for PET covering textiles. Polymer Degradation and Stability, 97(7), 1083–1089.
  • 22. Zhang, W., Zheng, C., Zhang, Y., Guo, W., 2019. Preparation and characterization of flame-retarded poly(butylene terephthalate)/poly(ethylene terephthalate) blends: Effect of content and type of flame retardant. Polymers, 11(11), 1784.
  • 23. Wu, J.N., Chen, L., Fu, T., Zhao, H.B., Guo, D.M., Wang, X.L., Wang, Y.Z., 2018. New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chemical Engineering Journal, 336, 622-632.
  • 24. Pan, Y., Liu, L., Song, L., Hu, Y., Wang, W., Zhao, H., 2019. Durable flame retardant treatment of polyethylene terephthalate (PET) fabric with cross-linked layer-by-layer assembled coating. Polymer Degradation and Stability, 165, 145-152.
  • 25. Ni, Y.P., Wu, W.S., Chen, L., Zhao, X., Qin, Z.H., Wang, X.L., Wang, Y.Z., 2020. How Hydrogen bond ınteractions affect the flame retardancy and anti-dripping performances of PET? Macromolecular Materials and Engineering, 305(1), 1-14.
  • 26. Fabia, J., Gawłowski, A., Rom, M., Ślusarczyk, C., Brzozowska-Stanuch, A., Sieradzka, M., 2020. PET fibers modified with cloisite nanoclay. Polymers, 12(4), 774.
  • 27. Yoshioka-Tarver, M., Condon, B.D., Santiago Cintrón, M., Chang, S., Easson, M.W., Fortier, C.A., Madiseon, C.A., Bland, J.M., Nguyen, T.M., 2012. Enhanced flame retardant property of fiber reactive halogen-free organophosphonate. Industrial and Engineering Chemistry Research, 51(34), 11031-11037.
  • 28. Nguyen, T.M., Chang, S., Condon, B., Slopek, R., Graves, E., Yoshioka-Tarver, M., 2013. Structural effect of phosphoramidate derivatives on the thermal and flame retardant behaviors of treated cotton cellulose. Industrial and Engineering Chemistry Research, 52(13), 4715-4724.
  • 29. Chang, S., Condon, B., Nam, S., 2020. Development of flame-resistant cotton fabrics with casein using pad-dry-cure and supercritical fluids methods. International Journal of Materials Science and Applications, 9(4), 53.
  • 30. Yin, C., Li, J., Xu, Q., Peng, Q., Liu, Y., Shen, X., 2007. Chemical modification of cotton cellulose in supercritical carbon dioxide: Synthesis and characterization of cellulose carbamate. Carbohydrate Polymers, 67(2), 147-154.
  • 31. Kraft, G., Muss, C., Adelwohrer, C., Roder, T., Rosenau, T., 2004. Treatment of cellulosic fibers with supercritical carbondioxide. Lenzinger Berichte, 83, 117-121.
  • 32. Tsioptsias, C., Panayiotou, C., 2011. Thermal stability and hydrophobicity enhancement of wood through impregnation with aqueous solutions and supercritical carbon dioxide. Journal of Materials Science, 46(16), 5406-5411.
  • 33. Van Ginneken, L., Weyten, H., 2003. Particle formation using supercritical carbon dioxide. Carbon Dioxide Recovery and Utilization, 123-136.
  • 34. De Gooijer, J.M., Koning, C.E., 2006. Chemical Modification of polymers in supercritical carbon dioxide. supercritical carbon dioxide. Carbon Dioxide Recovery and Utilization, 273-301.
  • 35. John, M.J., 2019. Flammability performance of biocomposites (Chapter 2). Green Composites for Automotive Applications. Georgios, K., Arlindo, S. (editors), Woodhead Publishing Series, 43-58.
  • 36. Gomez, C., Salvatori, D., Caglar, B., Trigueira, R., Orange, G., Michaud, V., 2021. Resin transfer molding of High-fluidity polyamide-6 with modified glass-fabric preforms. Composites Part A: Applied Science and Manufacturing, 147.
  • 37. Liu, B., Bickerton, S., Advani, S.G., (1996). Modelling and simulation of resin transfer moulding (RTM)-gate kontrol, venting and dry spot prediction. Composites Part A, 27(2), 135-141.
  • 38. Arulappan, C., Duraisamy, A., Adhikari, D., Gururaja, S., 2015. Investigations on pressure and thickness profiles in carbon fiber-reinforced polymers during vacuum assisted resin transfer molding. Journal of Reinforced Plastics and Composites, 34(1): 3-18.
  • 39. Piperopoulos, E., Scionti, G., Atria, M., Calabrese, L., Proverbio, E., 2022. Flame‐retardant performance evaluation of functional coatings filled with Mg(OH)2 and Al(OH)3. Polymers, 14(3), 1-16.
  • 40. Elbasuney, S., 2017. Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technology, 305, 538-545.
  • 41. White, S., 1998. Smoke suppressants. Plastics Additives, Pritchard, G. (editor), Polymer Science and Technology Series, Springer, 576-583.
  • 42. International Organization for Standardization, 1989. ISO 3795: Road vehicles, and tractors and machinery for agriculture and forestry (determination of burning behaviour of interior materials). https://www.iso.org/standard/9328.html, Access date: 11/02/2024.
  • 43. Taj, A., Swamy, R.P., Naik, K., Bharath, K.N., 2023. Effect of nano-filler aluminum oxide and graphene on flammability properties of kenaf epoxy composites. Journal of The Institution of Engineers (India): Series D, 104(1), 143-154.
  • 44. JSP International Group, Ltd. ARPRO fire resistant properties. https://www.arpro.com/ contentassets/d304d579bde242f1bec0a362fd9b85f7/arpro-fire-resistanceproperties-v04-en.pdf, Access date: 15/02/2024.

Otomotiv İç Döşemelerinin Güç Tutuşurluğunu Geliştirmek İçin Yeni Bir Yaklaşım

Year 2024, Volume: 39 Issue: 3, 577 - 584, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1559895

Abstract

Bu çalışmanın amacı, RTM ve scCO2 olmak üzere iki farklı yöntem kullanılarak otomotiv kumaşlarının alev geciktirici performansını arttırmaktır. Bir otobüsün koltuk döşemesinden elde edilen kumaş numuneleri yanma hızı (BR) ve sınırlayıcı oksijen indeksi (LOI) testlerine tabi tutulmuşlardır. Numuneler üzerinde termal analiz de yapılmıştır. Sonuçlar, tüm örneklerin BR ve LOI değerlerinin uygun aralıkta olduğunu ve kimyasal iyileştirmenin NF'nin FR performansında artış sağladığını göstermiştir. scCO2 yöntemi kullanılarak işlenen numune, NF'ye kıyasla, %32 LOI değeri (%18.5 artış) ve 21 mm/min BR değeri (%30 azalış) ile en iyi performansı göstermiştir. Elde edilen bulgulara göre, bu çalışmada kumaşa uygulanan yöntemlerin ve kimyasal işlemin ulaşım araçlarında yangına karşı güvenlik açısından umut verici sonuçlar verdiği gözlemlenmiştir.

References

  • 1. Kundu, C.K., Li, Z., Song, L., Hu, Y., 2020. An overview of fire retardant treatments for synthetic textiles: From traditional approaches to recent applications. European Polymer Journal 137, 109911.
  • 2. Younis, A.A., 2017. Protection of polyester fabric from ignition by a new chemical modification method. Journal of Industrial Textiles, 47(3), 363-376.
  • 3. Parvinzadeh, M., Ebrahimi, I., 2011. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone. Applied Surface Science, 257(9), 4062-4068.
  • 4. Islam, S., 2008. Development of automotive textiles with antiodour/antimicrobial properties. MSc thesis, RMIT University, 104.
  • 5. Kamath, M.G., Bhat, G.S., Parikh, D.V., Mueller, D., 2005. Cotton fiber nonwovens for automotive composites. International Nonwovens Journal, 14, 34-40.
  • 6. Singha, K., 2012. Strategies for in automobile: strategies for using automotive textiles-manufacturing techniques and applications. Journal of Safety Engineering, 1(1), 7-16..
  • 7. Başyiǧit, Z.Ö., 2019. Improvement of multifunctional automotive textile. Tekstil ve Konfeksiyon, 29(2): 113-20.
  • 8. Mezarcıöz, S., Mezarcıöz, S., Oğulata, R.T., 2018. Teknik tekstiller-otobüs koltuk döşemelerinde kullanımı ve uygulanan test yöntemleri. Tekstil ve Mühendis, (82), 36-41.
  • 9. Vietro, N. De., Belforte, L., Lambertini, V., Placenza, B., Fracassi, F., 2015. Plasma treatment for preparing durable water repellent and anti-stain synthetic fabrics for automotive applications. Journal of Surface Engineered Materials and Advanced Technology, 5(3), 103-109.
  • 10. MecCait, D., Ilgaz, S., Duran, D., Başal, G., Gülümser, T., Tarakçıoğlı, I., 2007. Teknik teksti̇ller ve kullanım alanları (Bölüm 2). Tekstil ve Konfeksiyon, 2, 79-82.
  • 11. Conway, R., 2016. Coating of textiles (Chapter 8). Handbook of Technical Textiles. 2nd edition, Horrocks, A.R., Anand, S. C. (editors), Woodhead Publishing Series, 211-229.
  • 12. Toprakkaya, D., Orhan, M., Güneşoğlu C., 2002. Polyester esaslı farklı yapıdaki otomotiv koltuk döşeme kumaş özelliklerinin karşılaştırılması. Otomotiv Teknolojileri Kongresi, Bursa.
  • 13. Walter, F., Mike H., 2001. Product engineering–interior trim. Textiles in Automotive Engineering, Walter, F., Mike H. (editors), Woodhead Publishing Series, 194-226.
  • 14. Singha, K., 2012. A Review on coating & lamination in textiles: processes and applications. American Journal of Polymer Science, 2(3), 39-49.
  • 15. Doba Kadem, F., Ergen, A., 2011. Investigation of some comfort properties of fabrics laminated with different types of membranes. Tekstil ve Konfeksiyon, 21(4), 323-7.
  • 16. Bulut, Y., Sülar, V., 2010. Kaplama veya lami̇nasyo tekni̇kleri̇ ı̇le üreti̇len kumaşların genel özelli̇kleri̇ ve performans testleri̇. The Journal of Textiles and Engineers, 6(16), 70-71.
  • 17. Schwarz, I.G., Kovačević, S., Kos, I., 2015. Physical-mechanical properties of automotive textile materials. Journal of Industrial Textiles, 45(3), 323-337.
  • 18. Bradshaw, H., 1927. Coated textiles. Industrial and Engineering Chemistry, 19(10), 1109-1110.
  • 19. Ekici, B., Kentli, A., Küçük, H., 2012. Improving sound absorption property of polyurethane foams by adding tea-leaf fibers. Archives of Acoustics, 37(4), 515-520.
  • 20. Li, Y.Z., 2019. Study of fire and explosion hazards of alternative fuel vehicles in tunnels. Fire Safety Journal, 110, 102871.
  • 21. Didane, N., Giraud, S., Devaux, E., 2012. Fire performances comparison of back coating and melt spinning approaches for PET covering textiles. Polymer Degradation and Stability, 97(7), 1083–1089.
  • 22. Zhang, W., Zheng, C., Zhang, Y., Guo, W., 2019. Preparation and characterization of flame-retarded poly(butylene terephthalate)/poly(ethylene terephthalate) blends: Effect of content and type of flame retardant. Polymers, 11(11), 1784.
  • 23. Wu, J.N., Chen, L., Fu, T., Zhao, H.B., Guo, D.M., Wang, X.L., Wang, Y.Z., 2018. New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chemical Engineering Journal, 336, 622-632.
  • 24. Pan, Y., Liu, L., Song, L., Hu, Y., Wang, W., Zhao, H., 2019. Durable flame retardant treatment of polyethylene terephthalate (PET) fabric with cross-linked layer-by-layer assembled coating. Polymer Degradation and Stability, 165, 145-152.
  • 25. Ni, Y.P., Wu, W.S., Chen, L., Zhao, X., Qin, Z.H., Wang, X.L., Wang, Y.Z., 2020. How Hydrogen bond ınteractions affect the flame retardancy and anti-dripping performances of PET? Macromolecular Materials and Engineering, 305(1), 1-14.
  • 26. Fabia, J., Gawłowski, A., Rom, M., Ślusarczyk, C., Brzozowska-Stanuch, A., Sieradzka, M., 2020. PET fibers modified with cloisite nanoclay. Polymers, 12(4), 774.
  • 27. Yoshioka-Tarver, M., Condon, B.D., Santiago Cintrón, M., Chang, S., Easson, M.W., Fortier, C.A., Madiseon, C.A., Bland, J.M., Nguyen, T.M., 2012. Enhanced flame retardant property of fiber reactive halogen-free organophosphonate. Industrial and Engineering Chemistry Research, 51(34), 11031-11037.
  • 28. Nguyen, T.M., Chang, S., Condon, B., Slopek, R., Graves, E., Yoshioka-Tarver, M., 2013. Structural effect of phosphoramidate derivatives on the thermal and flame retardant behaviors of treated cotton cellulose. Industrial and Engineering Chemistry Research, 52(13), 4715-4724.
  • 29. Chang, S., Condon, B., Nam, S., 2020. Development of flame-resistant cotton fabrics with casein using pad-dry-cure and supercritical fluids methods. International Journal of Materials Science and Applications, 9(4), 53.
  • 30. Yin, C., Li, J., Xu, Q., Peng, Q., Liu, Y., Shen, X., 2007. Chemical modification of cotton cellulose in supercritical carbon dioxide: Synthesis and characterization of cellulose carbamate. Carbohydrate Polymers, 67(2), 147-154.
  • 31. Kraft, G., Muss, C., Adelwohrer, C., Roder, T., Rosenau, T., 2004. Treatment of cellulosic fibers with supercritical carbondioxide. Lenzinger Berichte, 83, 117-121.
  • 32. Tsioptsias, C., Panayiotou, C., 2011. Thermal stability and hydrophobicity enhancement of wood through impregnation with aqueous solutions and supercritical carbon dioxide. Journal of Materials Science, 46(16), 5406-5411.
  • 33. Van Ginneken, L., Weyten, H., 2003. Particle formation using supercritical carbon dioxide. Carbon Dioxide Recovery and Utilization, 123-136.
  • 34. De Gooijer, J.M., Koning, C.E., 2006. Chemical Modification of polymers in supercritical carbon dioxide. supercritical carbon dioxide. Carbon Dioxide Recovery and Utilization, 273-301.
  • 35. John, M.J., 2019. Flammability performance of biocomposites (Chapter 2). Green Composites for Automotive Applications. Georgios, K., Arlindo, S. (editors), Woodhead Publishing Series, 43-58.
  • 36. Gomez, C., Salvatori, D., Caglar, B., Trigueira, R., Orange, G., Michaud, V., 2021. Resin transfer molding of High-fluidity polyamide-6 with modified glass-fabric preforms. Composites Part A: Applied Science and Manufacturing, 147.
  • 37. Liu, B., Bickerton, S., Advani, S.G., (1996). Modelling and simulation of resin transfer moulding (RTM)-gate kontrol, venting and dry spot prediction. Composites Part A, 27(2), 135-141.
  • 38. Arulappan, C., Duraisamy, A., Adhikari, D., Gururaja, S., 2015. Investigations on pressure and thickness profiles in carbon fiber-reinforced polymers during vacuum assisted resin transfer molding. Journal of Reinforced Plastics and Composites, 34(1): 3-18.
  • 39. Piperopoulos, E., Scionti, G., Atria, M., Calabrese, L., Proverbio, E., 2022. Flame‐retardant performance evaluation of functional coatings filled with Mg(OH)2 and Al(OH)3. Polymers, 14(3), 1-16.
  • 40. Elbasuney, S., 2017. Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technology, 305, 538-545.
  • 41. White, S., 1998. Smoke suppressants. Plastics Additives, Pritchard, G. (editor), Polymer Science and Technology Series, Springer, 576-583.
  • 42. International Organization for Standardization, 1989. ISO 3795: Road vehicles, and tractors and machinery for agriculture and forestry (determination of burning behaviour of interior materials). https://www.iso.org/standard/9328.html, Access date: 11/02/2024.
  • 43. Taj, A., Swamy, R.P., Naik, K., Bharath, K.N., 2023. Effect of nano-filler aluminum oxide and graphene on flammability properties of kenaf epoxy composites. Journal of The Institution of Engineers (India): Series D, 104(1), 143-154.
  • 44. JSP International Group, Ltd. ARPRO fire resistant properties. https://www.arpro.com/ contentassets/d304d579bde242f1bec0a362fd9b85f7/arpro-fire-resistanceproperties-v04-en.pdf, Access date: 15/02/2024.
There are 44 citations in total.

Details

Primary Language English
Subjects Textile Science
Journal Section Articles
Authors

Ozlem Erdem 0000-0002-0976-2162

Ali Can Yılmaz 0000-0001-9832-9880

Ahmet Çoşgun 0000-0002-0243-5476

Publication Date October 3, 2024
Submission Date March 13, 2024
Acceptance Date September 27, 2024
Published in Issue Year 2024 Volume: 39 Issue: 3

Cite

APA Erdem, O., Yılmaz, A. C., & Çoşgun, A. (2024). A New Approach for Improving Flame Retardancy of Automotive Interior Upholstery. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 577-584. https://doi.org/10.21605/cukurovaumfd.1559895