Araştırma Makalesi
BibTex RIS Kaynak Göster

38 GHz ve 55 GHz mm-dalga Uygulamaları için Tek RF Anahtarlı Radyasyon Deseni Yeniden Yapılandırılabilir Anten

Yıl 2025, Cilt: 40 Sayı: 2, 313 - 323, 02.07.2025
https://doi.org/10.21605/cukurovaumfd.1644169

Öz

Bu çalışmada, 38 GHz ve 55 GHz frekanslarında çalışan radyasyon deseni yeniden yapılandırılabilir bir anten tasarlanmış ve 5G, 6G ve radar sistemleri gibi yüksek frekanslı uygulamalar için analiz edilmiştir. Önerilen anten, RF anahtarı (BAR64-02V) kullanarak desen yeniden yapılandırılabilirliğini sağlar ve daha karmaşık besleme ağları veya birden fazla anten bileşeni yerine kompakt ve verimli bir çözüm sunar. Anten, OFF ve ON durumları arasında ana lob yönünü başarıyla değiştirir. 38 GHz'de, özellikle Phi = 90°'de (180°'den 50°'ye) ve Theta = 90°'de (-50°'den -131°'ye) önemli ışın yönü kaymaları gözlemlenmiştir. 55 GHz'de, en belirgin ışın kayması Phi = 0°'de (-120°'den -108°'e) meydana gelmiş olup, antenin güçlü yönlendirme adaptasyonu sağladığını göstermektedir. ON durumunda üç bantlı çalışma, OFF durumunda ise çift bantlı çalışma gözlemlenmiş olup, bu da gelişmiş operasyonel esneklik sağlamaktadır. Önerilen anten, 38 GHz'de %93 ve 55 GHz'de %90,6'ya ulaşan kabul edilebilir radyasyon verimlilikleri sunmaktadır. Simüle edilen VSWR ve S11 karakteristikleri, tasarımın farklı çalışma durumlarında dayanıklı olduğunu doğrulamaktadır. Antenin yeniden yapılandırılabilirliği, mm-dalga haberleşmesi için ışın yönlendirme, girişim azaltma ve sinyal kalitesinin artırılması gibi avantajlar sunar. Önerilen anten tasarımı, yüksek hızlı 5G ve 6G ağları ile kısmi V-bandı uygulamalarında kabul edilebilir performans sergilemiştir. Sonuçlar, tek bir RF anahtarı içeren üçgen monopole antenin desen ve frekans yeniden yapılandırılabilirliğini etkin bir şekilde sağladığını ve 38 GHz ve 55 GHz'de yüksek performans sunduğunu doğrulamaktadır. Bu çalışma, yeniden yapılandırılabilir antenlerin gelecek nesil kablosuz iletişim ve radar sistemlerinde uygulanabilirliğini göstermektedir ve ışın yönlendirme ve adaptif anten tasarımında daha fazla gelişmeye zemin hazırlamaktadır.

Kaynakça

  • 1. Padmanathan, S., Al-Hadi, A., Soh, P. & Al-Bawri, S. (2021). Dual band radiation pattern reconfigurable antenna for two-port 5G mobile terminals. 2021 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 1-4
  • 2. Liu, L., Li, W., Li, Y., Zhang, Z. & Feng, Z. (2014). A planar reconfigurable antenna with bidirectional end-fire and broadside radiation patterns. Microwave and Optical Technology Letters, 56(8), 1942-1946.
  • 3. Huang, H. & Bu, H. (2021). Electrically small radiation pattern reconfigurable antenna with expanded bandwidth and high front-to-back ratio. Progress in Electromagnetics Research M, 103, 103-113.
  • 4. Shi, H., Li, J., Zhu, S., Zhang, A. & Xu, Z. (2018). Radiation pattern reconfigurable waveguide slot array antenna using liquid crystal. International Journal of Antennas and Propagation, 2018, 1-9.
  • 5. Dakhli, S., Floc'H, J., Mahdjoubi, K., Rmili, H. & Choubani, F. (2014). A reconfigurable radiation pattern metamaterial-inspired antenna. 2014 Loughborough Antennas and Propagation Conference, LAPC, 1-4.
  • 6. Hao, J., Ren, J., Du, X., Mikkelsen, J., Shen, M. & Yin, Y. (2021). Pattern-reconfigurable yagi–uda antenna based on liquid metal. IEEE Antennas and Wireless Propagation Letters, 20(4), 587-591.
  • 7. Liu, N. & Wang, A. (2010). A novel tree-shaped antenna with reconfigurable radiation pattern. ICMMT, 359-361.
  • 8. Patriotis, M., Ayoub, F., Tawk, Y., Costantine, J. & Christodoulou, C. (2021). A four-element antenna array system with 15 reconfigurable radiation patterns. IEEE Access, 9, 108579-108585.
  • 9. Gao, F. (2024). A radiation-pattern reconfigurable antenna array for vehicular communications. Sensors, 24(13), 4136.
  • 10. Isa, S., Jusoh, M., Sabapathy, T., Nebhen, J., Kamarudin, M., Osman, M. & Soh, P. (2022). Reconfigurable pattern patch antenna for mid-band 5G: a review. Computers Materials & Continua, 70(2), 2699-2725.
  • 11. Aboualalaa, M. (2023). A pattern reconfigurable antenna using eight-dipole configuration for energy harvesting applications. Sensors, 23(20), 8451.
  • 12. Ghassemiparvin, B. & Ghalichechian, N. (2019). Reconfigurable antennas: quantifying payoffs for pattern, frequency, and polarisation reconfiguration. IET Microwaves Antennas & Propagation, 14(3), 149-153.
  • 13. Mahlaoui, Z., Antonino‐Daviu, E. & Ferrando‐Bataller, M. (2021). Radiation pattern reconfigurable antenna for IoT devices. International Journal of Antennas and Propagation, 2021, 1-13.
  • 14. Deng, Z., Gan, J., Wei, H., Gong, H. & Guo, X. (2016). Ka-band radiation pattern reconfigurable antenna based on microstrip MEMS switches. Progress in Electromagnetics Research Letters, 59, 93-99.
  • 15. Wu, C. & Ma, T. (2014). Pattern-reconfigurable self-oscillating active integrated antenna with frequency agility. IEEE Transactions on Antennas and Propagation, 62(12), 5992-5999.
  • 16. Idris, I., Hamid, M., Kamardin, K. & Rahim, M. (2017). A multi to wideband frequency reconfigurable antenna. International Journal of RF and Microwave Computer-Aided Engineering, 28(4), e21216.
  • 17. Deng, Z., Gan, J., Wei, H., Gong, H. & Guo, X. (2016). Ka-band radiation pattern reconfigurable antenna based on microstrip mems switches. Progress in Electromagnetics Research Letters, 59, 93-99.
  • 18. Montaser, A. (2023). Machine learning based design of pattern reconfigurable antenna. IEEE Access, 11, 33121-33133.
  • 19. Mohan, R. & Padmasine, K. (2022). A review on materials and reconfigurable antenna techniques for wireless communications: 5G and IoT applications. Progress in Electromagnetics Research B, 97, 91-114.
  • 20. Alekhya, B., Murugan, N.A., Madhav, B.T.P. & Reddy, N.K.R. (2021). Millimeter-wave reconfigurable antenna for 5G Wireless Communications. Progress in Electromagnetics Research Letters, 101, 107-115.
  • 21. Tang, S., Chiu, C. & Murch, R. (2020). Investigation of a reconfigurable pixel antenna for millimeter wave bands. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting.
  • 22. Gerami, H.H. & Kazemi, R. (2024). Development of a compact metasurface antenna with reconfigurable pattern through mode combination technique for 5G mm‐wave applications. IET Microwaves, Antennas & Propagation, 18(12), 885-897.
  • 23. Trzebiatowski, K., Rzymowski, M., Kulas, L. & Nyka, K. (2020). Simple 60 GHz switched beam antenna for 5G millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 20(1), 38-42.
  • 24. Alsaab, N., Alhassoon, K., Alsaleem, F., Alsunaydih, F.N., Madbouly, S.O., Khaleel, S.A. & Shaban, M. (2025). High-performance series-fed array multiple-input multiple-output antenna for millimeter-wave 5G networks. Sensors, 25(4), 1036.
  • 25. Mshwat, W.A., Kosha, J., Salisu, A., Ullah, A., Ali, N.T., Issa, E. & Abd-Alhameed, R. (2024). Compact reconfigurable MIMO antenna for 5G and Wi-Fi applications. IEEE Access.
  • 26. Akinola, S. & Reddy, L. (2023). The enhancing energy efficiency in hyperthermia treatment: a frequency-reconfigurable l-shape antenna design and analysis. Technology Audit and Production Reserves, 1(1(75)), 43-50.
  • 27. Jiang, Z., Su, T., & Hou, J. (2018). A beam‐switchable low‐profile antenna based on substrate integrated waveguide. International Journal of RF and Microwave Computer-Aided Engineering, 28(9), 1-8.
  • 28. Parchin, N.O., Al‐Yasir, Y.I.A., Abdulkhaleq, A.M., Elfergani, I., Rayit, A., Noras, J.M. & Abd‐Alhameed, R.A. (2018). Frequency reconfigurable antenna array for mm-wave 5G mobile handsets. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer, 438-445.
  • 29. Tang, S., Chiu, C. & Murch, R. (2020). Investigation of a reconfigurable pixel antenna for millimeter wave bands. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting.
  • 30. Jilani, S.F., Rahimian, A., Alfadhl, Y. & Alomainy, A. (2018). Low-profile flexible frequency-reconfigurable millimetre-wave antenna for 5G applications. Flexible and Printed Electronics, 3(3), 035003.
  • 31. Available Online: https://www.rogerscorp.com/advanced-electronics-solutions/ad-series-laminates/ ad250c-laminates. Access date: 20.02.2025.
  • 32. Available Online: https://www.andwinpcb.com/arlon-diclad-527/. Access date: 20.02.2025.
  • 33. Available Online: https://www.matweb.com/search/datasheet.aspx?matguid=edefd245b2de46ceb5f3d 8f1f63740f7&ckck=1. Access date: 20.02.2025.
  • 34. Akgöl, O. (2018). PCB dairesel yama anten tabanlı etanol ve metanol algılayıcı tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 287-296.
  • 35. Ünal, E. ve Doğan, C. (2020). Metamalzeme yapılarıyla fraktal anten parametrelerinin iyileştirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(1), 67-78.
  • 36. Biçer, M.B. ve Akdağlı, A. (2016). Ultra geniş bant uygulamaları için yeni bir yığın monopole mikroşerit anten. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(ÖS2), 21-26.
  • 37. Datasheet for Infineon BAR50-02V, Silicon PIN Diode, Infineon Technologies AG. Available Online: https://www.infineon.com/dgdl/Infineon-BAR64-02V-DS-v01_01-EN.pdf?fileId=5546d462689a790c 01690f0247ae38fc.
  • 38. Varshney, A., Neebha, T.M., Sharma, V., Jency, J. G., & Andrushia, A. D. (2023). Dodecagon-shaped frequency reconfigurable antenna practically loaded with 3-delta structures for ISM band and wireless applications. IETE Journal of Research, 69(11), 7747-7759.

Radiation Pattern Reconfigurable Antenna with Single RF-Switch for 38 GHz and 55 GHz mm-wave Applications

Yıl 2025, Cilt: 40 Sayı: 2, 313 - 323, 02.07.2025
https://doi.org/10.21605/cukurovaumfd.1644169

Öz

In this study, a radiation pattern reconfigurable antenna operating at 38 GHz and 55 GHz is designed and analyzed for high-frequency applications in 5G, 6G, and radar systems. The proposed antenna utilizes an RF switch (BAR64-02V) to achieve pattern reconfigurability, offering a compact and efficient solution compared to more complex feed networks or multiple antenna components. The antenna successfully shifts its main lobe direction between OFF and ON states at both 38 GHz and 55 GHz. At 38 GHz, significant beam direction shifts are observed, particularly in Phi = 90° (180° to 50°) and Theta = 90° (-50° to -131°). At 55 GHz, the most prominent beam shift occurred at Phi = 0° (-120° to -108°), indicating strong directional adaptability. The ON-state enables a triple-band operation, while the OFF-state exhibits a dual-band response, providing enhanced operational flexibility. The proposed antenna offers acceptable radiation efficiencies, with values reaching 93% at 38 GHz and 90.6% at 55 GHz. The simulated VSWR and S11 characteristics confirm the robustness of the design in different operational states. The antenna’s reconfigurability makes it ideal for mm-Wave communications, supporting beamforming, interference reduction, and enhanced signal quality. The proposed antenna design has also shown acceptable performance for high-speed 5G and 6G networks, and partial V-band applications. The results confirm that the proposed triangular monopole antenna with a single RF switch effectively achieves pattern and frequency reconfigurability while maintaining high performance at 38 GHz and 55 GHz. This study demonstrates the feasibility of reconfigurable antennas for next-generation wireless communication and radar systems, paving the way for further advancements in beamforming and adaptive antenna design.

Kaynakça

  • 1. Padmanathan, S., Al-Hadi, A., Soh, P. & Al-Bawri, S. (2021). Dual band radiation pattern reconfigurable antenna for two-port 5G mobile terminals. 2021 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 1-4
  • 2. Liu, L., Li, W., Li, Y., Zhang, Z. & Feng, Z. (2014). A planar reconfigurable antenna with bidirectional end-fire and broadside radiation patterns. Microwave and Optical Technology Letters, 56(8), 1942-1946.
  • 3. Huang, H. & Bu, H. (2021). Electrically small radiation pattern reconfigurable antenna with expanded bandwidth and high front-to-back ratio. Progress in Electromagnetics Research M, 103, 103-113.
  • 4. Shi, H., Li, J., Zhu, S., Zhang, A. & Xu, Z. (2018). Radiation pattern reconfigurable waveguide slot array antenna using liquid crystal. International Journal of Antennas and Propagation, 2018, 1-9.
  • 5. Dakhli, S., Floc'H, J., Mahdjoubi, K., Rmili, H. & Choubani, F. (2014). A reconfigurable radiation pattern metamaterial-inspired antenna. 2014 Loughborough Antennas and Propagation Conference, LAPC, 1-4.
  • 6. Hao, J., Ren, J., Du, X., Mikkelsen, J., Shen, M. & Yin, Y. (2021). Pattern-reconfigurable yagi–uda antenna based on liquid metal. IEEE Antennas and Wireless Propagation Letters, 20(4), 587-591.
  • 7. Liu, N. & Wang, A. (2010). A novel tree-shaped antenna with reconfigurable radiation pattern. ICMMT, 359-361.
  • 8. Patriotis, M., Ayoub, F., Tawk, Y., Costantine, J. & Christodoulou, C. (2021). A four-element antenna array system with 15 reconfigurable radiation patterns. IEEE Access, 9, 108579-108585.
  • 9. Gao, F. (2024). A radiation-pattern reconfigurable antenna array for vehicular communications. Sensors, 24(13), 4136.
  • 10. Isa, S., Jusoh, M., Sabapathy, T., Nebhen, J., Kamarudin, M., Osman, M. & Soh, P. (2022). Reconfigurable pattern patch antenna for mid-band 5G: a review. Computers Materials & Continua, 70(2), 2699-2725.
  • 11. Aboualalaa, M. (2023). A pattern reconfigurable antenna using eight-dipole configuration for energy harvesting applications. Sensors, 23(20), 8451.
  • 12. Ghassemiparvin, B. & Ghalichechian, N. (2019). Reconfigurable antennas: quantifying payoffs for pattern, frequency, and polarisation reconfiguration. IET Microwaves Antennas & Propagation, 14(3), 149-153.
  • 13. Mahlaoui, Z., Antonino‐Daviu, E. & Ferrando‐Bataller, M. (2021). Radiation pattern reconfigurable antenna for IoT devices. International Journal of Antennas and Propagation, 2021, 1-13.
  • 14. Deng, Z., Gan, J., Wei, H., Gong, H. & Guo, X. (2016). Ka-band radiation pattern reconfigurable antenna based on microstrip MEMS switches. Progress in Electromagnetics Research Letters, 59, 93-99.
  • 15. Wu, C. & Ma, T. (2014). Pattern-reconfigurable self-oscillating active integrated antenna with frequency agility. IEEE Transactions on Antennas and Propagation, 62(12), 5992-5999.
  • 16. Idris, I., Hamid, M., Kamardin, K. & Rahim, M. (2017). A multi to wideband frequency reconfigurable antenna. International Journal of RF and Microwave Computer-Aided Engineering, 28(4), e21216.
  • 17. Deng, Z., Gan, J., Wei, H., Gong, H. & Guo, X. (2016). Ka-band radiation pattern reconfigurable antenna based on microstrip mems switches. Progress in Electromagnetics Research Letters, 59, 93-99.
  • 18. Montaser, A. (2023). Machine learning based design of pattern reconfigurable antenna. IEEE Access, 11, 33121-33133.
  • 19. Mohan, R. & Padmasine, K. (2022). A review on materials and reconfigurable antenna techniques for wireless communications: 5G and IoT applications. Progress in Electromagnetics Research B, 97, 91-114.
  • 20. Alekhya, B., Murugan, N.A., Madhav, B.T.P. & Reddy, N.K.R. (2021). Millimeter-wave reconfigurable antenna for 5G Wireless Communications. Progress in Electromagnetics Research Letters, 101, 107-115.
  • 21. Tang, S., Chiu, C. & Murch, R. (2020). Investigation of a reconfigurable pixel antenna for millimeter wave bands. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting.
  • 22. Gerami, H.H. & Kazemi, R. (2024). Development of a compact metasurface antenna with reconfigurable pattern through mode combination technique for 5G mm‐wave applications. IET Microwaves, Antennas & Propagation, 18(12), 885-897.
  • 23. Trzebiatowski, K., Rzymowski, M., Kulas, L. & Nyka, K. (2020). Simple 60 GHz switched beam antenna for 5G millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 20(1), 38-42.
  • 24. Alsaab, N., Alhassoon, K., Alsaleem, F., Alsunaydih, F.N., Madbouly, S.O., Khaleel, S.A. & Shaban, M. (2025). High-performance series-fed array multiple-input multiple-output antenna for millimeter-wave 5G networks. Sensors, 25(4), 1036.
  • 25. Mshwat, W.A., Kosha, J., Salisu, A., Ullah, A., Ali, N.T., Issa, E. & Abd-Alhameed, R. (2024). Compact reconfigurable MIMO antenna for 5G and Wi-Fi applications. IEEE Access.
  • 26. Akinola, S. & Reddy, L. (2023). The enhancing energy efficiency in hyperthermia treatment: a frequency-reconfigurable l-shape antenna design and analysis. Technology Audit and Production Reserves, 1(1(75)), 43-50.
  • 27. Jiang, Z., Su, T., & Hou, J. (2018). A beam‐switchable low‐profile antenna based on substrate integrated waveguide. International Journal of RF and Microwave Computer-Aided Engineering, 28(9), 1-8.
  • 28. Parchin, N.O., Al‐Yasir, Y.I.A., Abdulkhaleq, A.M., Elfergani, I., Rayit, A., Noras, J.M. & Abd‐Alhameed, R.A. (2018). Frequency reconfigurable antenna array for mm-wave 5G mobile handsets. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer, 438-445.
  • 29. Tang, S., Chiu, C. & Murch, R. (2020). Investigation of a reconfigurable pixel antenna for millimeter wave bands. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting.
  • 30. Jilani, S.F., Rahimian, A., Alfadhl, Y. & Alomainy, A. (2018). Low-profile flexible frequency-reconfigurable millimetre-wave antenna for 5G applications. Flexible and Printed Electronics, 3(3), 035003.
  • 31. Available Online: https://www.rogerscorp.com/advanced-electronics-solutions/ad-series-laminates/ ad250c-laminates. Access date: 20.02.2025.
  • 32. Available Online: https://www.andwinpcb.com/arlon-diclad-527/. Access date: 20.02.2025.
  • 33. Available Online: https://www.matweb.com/search/datasheet.aspx?matguid=edefd245b2de46ceb5f3d 8f1f63740f7&ckck=1. Access date: 20.02.2025.
  • 34. Akgöl, O. (2018). PCB dairesel yama anten tabanlı etanol ve metanol algılayıcı tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 287-296.
  • 35. Ünal, E. ve Doğan, C. (2020). Metamalzeme yapılarıyla fraktal anten parametrelerinin iyileştirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(1), 67-78.
  • 36. Biçer, M.B. ve Akdağlı, A. (2016). Ultra geniş bant uygulamaları için yeni bir yığın monopole mikroşerit anten. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(ÖS2), 21-26.
  • 37. Datasheet for Infineon BAR50-02V, Silicon PIN Diode, Infineon Technologies AG. Available Online: https://www.infineon.com/dgdl/Infineon-BAR64-02V-DS-v01_01-EN.pdf?fileId=5546d462689a790c 01690f0247ae38fc.
  • 38. Varshney, A., Neebha, T.M., Sharma, V., Jency, J. G., & Andrushia, A. D. (2023). Dodecagon-shaped frequency reconfigurable antenna practically loaded with 3-delta structures for ISM band and wireless applications. IETE Journal of Research, 69(11), 7747-7759.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Elektromanyetiği
Bölüm Makaleler
Yazarlar

Duygu Nazan Gençoğlan 0000-0001-5014-9514

Yayımlanma Tarihi 2 Temmuz 2025
Gönderilme Tarihi 21 Şubat 2025
Kabul Tarihi 8 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 2

Kaynak Göster

APA Gençoğlan, D. N. (2025). Radiation Pattern Reconfigurable Antenna with Single RF-Switch for 38 GHz and 55 GHz mm-wave Applications. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(2), 313-323. https://doi.org/10.21605/cukurovaumfd.1644169