Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Hydrogen Ratio on Flame Temperatures in the Methane Combustion Reaction in the Burner

Yıl 2025, Cilt: 40 Sayı: 2, 361 - 373, 02.07.2025
https://doi.org/10.21605/cukurovaumfd.1665346

Öz

Nowadays, with the increasing energy demand and concerns about environmental sustainability, hydrogen is regarded as a crucial energy carrier in reducing dependence on conventional fuels. Hydrogen plays a critical role in various fields, particularly in fuel cells. Therefore, due to the undesirable effects of pure hydrogen usage on temperature and emissions, as well as the challenges and high costs of storage, efforts are being made to blend it with conventional fuels in varying proportions to achieve optimal combustion conditions. The aim of this study is to investigate the effects of adding hydrogen gas at different concentrations, without pre-mixing, to the methane combustion reaction inside the burner on flame characteristics. The combustion reaction of CH4 was carried out with six different H₂ concentrations (0%, 5%, 10%, 15%, 20%, 25%), and it was observed that as the H2 ratio increased, the flame temperature rose and its shape became more stable. The maximum flame temperature was recorded as 2732.248 K with 15% H₂. At 25% H2, the mixture exhibited behavior similar to that of a rich combustion mixture. The burner used in this study provides an alternative solution in the field of hydrogen burners.

Kaynakça

  • 1. Lee, S.V., Lee, S.H., Park, Y.J. & Cho, Y. (2011). Combustion and emission characteristics of HCNG (Hydrogenmethane) in a constant volume chamber. Journal of Mechanical Science and Technology, 25(2), 489-494.
  • 2. Mazloomi, K. & Gomes, C. (2012). Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews, 16(5), 3024-3033.
  • 3. Erdener, H., Erkan, S., Eroğlu, E., Şengül, E. ve Baç, N. (2010). Sürdürülebilir enerji ve hidrojen. 2nd Ed., Odtü Yayıncılık, Ankara, 105.
  • 4. Towler, B.F. (2014). The future of energy. 1st Ed., Academic Press, Massachusetts, 376.
  • 5. International Energy Agency, (2019). The future of hydrogen seizing today’s opportunities. IEA, Japan.
  • 6. Shyuan, L.K. (2014). Fuel cell and hydrogen energy system. 7th Asian School on Renewable Energy, The National University of Malaysia.
  • 7. Dincer, İ., Javani, N., Sorgulu, F. ve Öztürk, M. (2021). Türkiye’de yeşil hidrojenin üretilip doğalgaza karıştırılması çalışmaları. Hydrogen Technologies Association, İstanbul.
  • 8. Global Methane Initiative, (2023). Importance of methane. Environmental Protection Agency, United States.
  • 9. Saacke Gmbh Co, (2020). Hydrogen burners for industrial decarbonization. Whitepaper Hydrogen in Industry and Shipping, Germany.
  • 10. Çalık, A. (2018). Effect of fuel enrichment with hydrogen on engine performance and emission characteristics of diesel engine. Çukurova University Journal of the Faculty of Engineering and Architecture, 33(3), 255-262.
  • 11. Akçay, A., Yılmaz, İ.T., Feyzioğlu, A. & Özer, S. (2019). Effect of hydrogen addition on exhaust emissions in a compression ignition engine. Çukurova University Journal of the Faculty of Engineering and Architecture, 34(3), 21-34.
  • 12. İlbas, M., Bektas, A. & Karyeyen, S. (2019). A new burner for oxy-fuel combustion of hydrogen-containing low-calorific value syngases: An experimental and numerical study. Fuel, 256, 1-14.
  • 13. Toyota Motor Corporation, (2018). Toyota develops world’s first general-purpose hydrogen burner for industrial use. Toyota, Japan.
  • 14. Ortiz-Imedio, R., Ortiz, A., Urroz, J.C., Dieguez, P.M., Gorri, D., Gandia, L.M. & Ortiz, I. (2021). Comparative performance of coke oven gas, hydrogen and methane in a spark ignition engine. International Journal of Hydrogen Energy, 46(33), 17572-17586.
  • 15. Amez, I., Castells, B., Llamas, B., Bolonio, D., Garcia-Martinez, M.J., Lorenzo, J.L., Garcia-Torrent, J. & Ortega, M.F. (2021). Experimental study of biogas-hydrogen mixtures combustion in conventional natural gas systems. Applied Sciences, 11, 6513.
  • 16. Ozturk, M. & Dincer, I. (2022). System development and assessment for green hydrogen generation and blending with natural gas. Energy, 261, 125233.
  • 17. Ökten, M., Variyenli, H.İ., Karyeyen, S. & Göktekin, K. (2024). Performance analysis of methane-hydrogen mixture in combined type gas burners. Journal of Polytechnic, 1-1.
  • 18. Ilbas, M., Crayford, A.P., Yılmaz, İ., Bowen, P.J. & Syred, N. (2006). Laminar-burning velocities of hydrogen-air and hydrogen-methane-air mixtures: An experimental study. International Journal of Hydrogen Energy, 31, 1768-1779.
  • 19. Markewitz, P., Kuckshinrichs, W., Leither, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A. & Müller, T.E. (2012). Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science, 5(6), 7281-7305.
  • 20. Öztürk, Z.G. (2013). Computational fluid dynamics (CFD) modeling of hydrogen combustion in a spherical combuster. MSc Thesis, Institute of Natural and Applied Sciences of Gazi University, 140.
  • 21. Ansys, Inc. (2021). Ansys fluent theory guide. R2, United States.
  • 22. Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. & Zhu, J. (1995). A new k-𝜀 eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3), 227-238.
  • 23. Pope, S.B. (2000). Turbulent flows. Cambridge University Press, UK, 748.
  • 24. Versteeg, H.K. & Malalasekera, W. (2007). An introduction to computational fluid dynamics-the finite volume methods. 2nd Ed., Pearson Prentice Hall, England, 503.
  • 25. Yilmaz, H., Karyeyen, S., Tepe, A.Ü. & Brüggemann, D. (2023). Colorless distributed combustion characteristics of hydrogen/air mixtures in a micro combustor. Fuel, 332(2), 126163.
  • 26. Habib, M.A., Abdulrahman G.A.Q., Alquaity A.B.S. & Qasem N.A.A. (2024). Hydrogen combustion, production, and applications: a review. Alexandria Engineering Journal, 100, 182-207.
  • 27. Yılmaz, İ. & İlbaş, M. (2008). An experimental study on hydrogen-methane mixtured fuels. International Communications in Heat and Mass Transfer, 35, 178-187.
  • 28. Ozturk, M., Sorgulu, F., Javani, N. & Dincer, I. (2023). An experimental study on the environmental impact of hydrogen and natural gas blend burning. Chemosphere, 329, 138671.
  • 29. Sorgulu, F., Ozturk, M, Javani, N. & Dincer, I. (2023). Experimental investigation for combustion performance of hydrogen and natural gas fuel blends. International Journal of Hydrogen Energy, 48, 34476-34485.
  • 30. Choudhury, V.G., McDonell, S. & Samuelsen, S. (2020). Combustion performance of low-NOx and conventional storage water heaters operated on hydrogen enriched natural gas. International Journal of Hydrogen Energy, 45(3), 2405-2417.
  • 31. Zhan, X., Chen, Z. & Qin, C. (2022). Effect of hydrogen-blended natural gas on combustion stability and emission of water heater burner. Case Studies in Thermal Engineering, 37, 102246.
  • 32. Yan, R., Gao, W., Zhang, Y. & Zhang, J. (2018). Combustion performance tests of hydrogen-natural gas mixture as fuels in domestic gas appliances. Natural Gas Industry, 38(2), 119-124.
  • 33. İlbaş, M. & Candan, G. (2023). Effects of CO2 dilution on flame stabilization and NOx emission in a small swirl burner and furnace. Journal of Polytechnic, 26(2), 603-608.
  • 34. Sahin, B., Doner, N. & Ilbas, M. (2024). Flame and flow analysis of LPG in household cookers with rectangular ports. Journal of Polytechnic, 27(3), 1121-1128.

Brülör İçerisinde Gerçekleştirilen Metan Gazı Yanma Reaksiyonunda Hidrojen Oranının Alev Sıcaklıklarına Etkisi

Yıl 2025, Cilt: 40 Sayı: 2, 361 - 373, 02.07.2025
https://doi.org/10.21605/cukurovaumfd.1665346

Öz

Günümüzde artan enerji talebi ve çevresel sürdürülebilirlik kaygıları ile birlikte konvansiyonel yakıtlara bağımlılığı azaltma sürecinde hidrojen önemli bir enerji taşıyıcısı olarak görülmektedir. Hidrojen, yakıt hücreleri başta olmak üzere birçok farklı alanda kritik bir görev üstlenmektedir. Bu sebeple saf hidrojen kullanımının sıcaklık ve emisyon değerleri üzerindeki istenmeyen sonuçları ve depolamasının zor ve maliyetli olması sebebiyle konvansiyonel yakıtlara farklı oranlarda karıştırılarak optimum yanma koşulları oluşturulmaya çalışılmaktadır. Bu çalışmanın amacı brülör içerisindeki metan gazı yanma reaksiyonuna, önceden karıştırılmadan ve farklı konsantrasyonlarda hidrojen gazı eklenmesiyle oluşacak alev spesifikasyonları üzerindeki etkisinin incelenmesidir. Altı farklı H2 konsantrasyonunun (%0, %5, %10, %15, %20, %25) CH4 gazı yanma reaksiyonu gerçekleştirilmiş, H2 oranının artmasıyla alev sıcaklığının yükseldiği ve şeklinin daha stabil bir hale geldiği gözlemlenmiştir. Maksimum alev sıcaklığı %15 H2 kullanılarak 2732,248 K olarak elde edilmiştir. %25 H2 kullanımında karışımın zengin karışım gibi reaksiyon verdiği gözlemlenmiştir. Çalışmada kullanılan bu brülör geliştirilen hidrojen brülörleri alanına farklı bir çözüm sunmaktadır.

Kaynakça

  • 1. Lee, S.V., Lee, S.H., Park, Y.J. & Cho, Y. (2011). Combustion and emission characteristics of HCNG (Hydrogenmethane) in a constant volume chamber. Journal of Mechanical Science and Technology, 25(2), 489-494.
  • 2. Mazloomi, K. & Gomes, C. (2012). Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews, 16(5), 3024-3033.
  • 3. Erdener, H., Erkan, S., Eroğlu, E., Şengül, E. ve Baç, N. (2010). Sürdürülebilir enerji ve hidrojen. 2nd Ed., Odtü Yayıncılık, Ankara, 105.
  • 4. Towler, B.F. (2014). The future of energy. 1st Ed., Academic Press, Massachusetts, 376.
  • 5. International Energy Agency, (2019). The future of hydrogen seizing today’s opportunities. IEA, Japan.
  • 6. Shyuan, L.K. (2014). Fuel cell and hydrogen energy system. 7th Asian School on Renewable Energy, The National University of Malaysia.
  • 7. Dincer, İ., Javani, N., Sorgulu, F. ve Öztürk, M. (2021). Türkiye’de yeşil hidrojenin üretilip doğalgaza karıştırılması çalışmaları. Hydrogen Technologies Association, İstanbul.
  • 8. Global Methane Initiative, (2023). Importance of methane. Environmental Protection Agency, United States.
  • 9. Saacke Gmbh Co, (2020). Hydrogen burners for industrial decarbonization. Whitepaper Hydrogen in Industry and Shipping, Germany.
  • 10. Çalık, A. (2018). Effect of fuel enrichment with hydrogen on engine performance and emission characteristics of diesel engine. Çukurova University Journal of the Faculty of Engineering and Architecture, 33(3), 255-262.
  • 11. Akçay, A., Yılmaz, İ.T., Feyzioğlu, A. & Özer, S. (2019). Effect of hydrogen addition on exhaust emissions in a compression ignition engine. Çukurova University Journal of the Faculty of Engineering and Architecture, 34(3), 21-34.
  • 12. İlbas, M., Bektas, A. & Karyeyen, S. (2019). A new burner for oxy-fuel combustion of hydrogen-containing low-calorific value syngases: An experimental and numerical study. Fuel, 256, 1-14.
  • 13. Toyota Motor Corporation, (2018). Toyota develops world’s first general-purpose hydrogen burner for industrial use. Toyota, Japan.
  • 14. Ortiz-Imedio, R., Ortiz, A., Urroz, J.C., Dieguez, P.M., Gorri, D., Gandia, L.M. & Ortiz, I. (2021). Comparative performance of coke oven gas, hydrogen and methane in a spark ignition engine. International Journal of Hydrogen Energy, 46(33), 17572-17586.
  • 15. Amez, I., Castells, B., Llamas, B., Bolonio, D., Garcia-Martinez, M.J., Lorenzo, J.L., Garcia-Torrent, J. & Ortega, M.F. (2021). Experimental study of biogas-hydrogen mixtures combustion in conventional natural gas systems. Applied Sciences, 11, 6513.
  • 16. Ozturk, M. & Dincer, I. (2022). System development and assessment for green hydrogen generation and blending with natural gas. Energy, 261, 125233.
  • 17. Ökten, M., Variyenli, H.İ., Karyeyen, S. & Göktekin, K. (2024). Performance analysis of methane-hydrogen mixture in combined type gas burners. Journal of Polytechnic, 1-1.
  • 18. Ilbas, M., Crayford, A.P., Yılmaz, İ., Bowen, P.J. & Syred, N. (2006). Laminar-burning velocities of hydrogen-air and hydrogen-methane-air mixtures: An experimental study. International Journal of Hydrogen Energy, 31, 1768-1779.
  • 19. Markewitz, P., Kuckshinrichs, W., Leither, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A. & Müller, T.E. (2012). Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science, 5(6), 7281-7305.
  • 20. Öztürk, Z.G. (2013). Computational fluid dynamics (CFD) modeling of hydrogen combustion in a spherical combuster. MSc Thesis, Institute of Natural and Applied Sciences of Gazi University, 140.
  • 21. Ansys, Inc. (2021). Ansys fluent theory guide. R2, United States.
  • 22. Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. & Zhu, J. (1995). A new k-𝜀 eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3), 227-238.
  • 23. Pope, S.B. (2000). Turbulent flows. Cambridge University Press, UK, 748.
  • 24. Versteeg, H.K. & Malalasekera, W. (2007). An introduction to computational fluid dynamics-the finite volume methods. 2nd Ed., Pearson Prentice Hall, England, 503.
  • 25. Yilmaz, H., Karyeyen, S., Tepe, A.Ü. & Brüggemann, D. (2023). Colorless distributed combustion characteristics of hydrogen/air mixtures in a micro combustor. Fuel, 332(2), 126163.
  • 26. Habib, M.A., Abdulrahman G.A.Q., Alquaity A.B.S. & Qasem N.A.A. (2024). Hydrogen combustion, production, and applications: a review. Alexandria Engineering Journal, 100, 182-207.
  • 27. Yılmaz, İ. & İlbaş, M. (2008). An experimental study on hydrogen-methane mixtured fuels. International Communications in Heat and Mass Transfer, 35, 178-187.
  • 28. Ozturk, M., Sorgulu, F., Javani, N. & Dincer, I. (2023). An experimental study on the environmental impact of hydrogen and natural gas blend burning. Chemosphere, 329, 138671.
  • 29. Sorgulu, F., Ozturk, M, Javani, N. & Dincer, I. (2023). Experimental investigation for combustion performance of hydrogen and natural gas fuel blends. International Journal of Hydrogen Energy, 48, 34476-34485.
  • 30. Choudhury, V.G., McDonell, S. & Samuelsen, S. (2020). Combustion performance of low-NOx and conventional storage water heaters operated on hydrogen enriched natural gas. International Journal of Hydrogen Energy, 45(3), 2405-2417.
  • 31. Zhan, X., Chen, Z. & Qin, C. (2022). Effect of hydrogen-blended natural gas on combustion stability and emission of water heater burner. Case Studies in Thermal Engineering, 37, 102246.
  • 32. Yan, R., Gao, W., Zhang, Y. & Zhang, J. (2018). Combustion performance tests of hydrogen-natural gas mixture as fuels in domestic gas appliances. Natural Gas Industry, 38(2), 119-124.
  • 33. İlbaş, M. & Candan, G. (2023). Effects of CO2 dilution on flame stabilization and NOx emission in a small swirl burner and furnace. Journal of Polytechnic, 26(2), 603-608.
  • 34. Sahin, B., Doner, N. & Ilbas, M. (2024). Flame and flow analysis of LPG in household cookers with rectangular ports. Journal of Polytechnic, 27(3), 1121-1128.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Akışkan Akışı, Isı ve Kütle Transferinde Hesaplamalı Yöntemler (Hesaplamalı Akışkanlar Dinamiği Dahil), Akışkan Mekaniği ve Termal Mühendislik (Diğer), Makine Mühendisliğinde Sayısal Yöntemler, Sayısal Modelleme ve Mekanik Karakterizasyon, Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Anıl Erkan 0000-0002-8626-6875

Gökhan Tüccar 0000-0003-3041-299X

Yayımlanma Tarihi 2 Temmuz 2025
Gönderilme Tarihi 25 Mart 2025
Kabul Tarihi 28 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 2

Kaynak Göster

APA Erkan, A., & Tüccar, G. (2025). The Effect of Hydrogen Ratio on Flame Temperatures in the Methane Combustion Reaction in the Burner. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(2), 361-373. https://doi.org/10.21605/cukurovaumfd.1665346