Araştırma Makalesi
BibTex RIS Kaynak Göster

Çelik Yapıların İlerlemeli-Aşamalı Göçme ve Dayanıklılık Analizi

Yıl 2025, Cilt: 40 Sayı: 2, 429 - 444, 02.07.2025
https://doi.org/10.21605/cukurovaumfd.1694613

Öz

Bu çalışma, Uygulamalı Elemanlar Yöntemi (AEM) kullanılarak beş katlı, üç boyutlu bir çelik moment taşıyıcı çerçevenin ilerlemeli göçme davranışını incelemektedir. Model, geçmişte ABD'de bulunan mevcut çok katlı bir çelik yapıyı, gerçekçi geometrik ve yapısal özellikleriyle temsil etmektedir. Yapısal sistem, rijit kiriş-kolon birleşimleriyle tam moment aktarımı sağlayan bağlantılardan oluşmaktadır. Taşıyıcı sistemin geometrisi, boyuna yönde yedi, enine yönde üç açıklıktan oluşmakta olup, açıklık genişlikleri düzensiz ve kat yükseklikleri değişkendir—bu durum, gerçekçi bir yüksek yapı düzenini yansıtmaktadır. Üç kritik kolon kaybı senaryosu modellenmiştir: (1) kısa kenarın ortası, (2) uzun kenarın ortası ve (3) birinci kattaki köşe kolonu. AEM, yüksek derecede doğrusal olmayan davranışları simüle etmek için kullanılmıştır. Uzun kenarın ortasındaki kolonun kaldırılması en büyük yer değiştirmelere yol açmıştır. Bu durum kolon konumunun ilerleyici göçme hassasiyeti ve yapısal dayanıklılık üzerindeki belirleyici etkisini ortaya koymuştur.

Kaynakça

  • 1. Lu, J.X., Wu, H. & Fang, Q. (2022). Progressive collapse of Murrah Federal Building: Revisited. Journal of Building Engineering, 57, 104939.
  • 2. Nist Ncstar, (2005). Final report on the collapse of the World Trade Center Towers. National Construction Safety Team for the Federal Building and Fire Safety Investigation of the World Trade Center Disaster. National Institute of Standards and Technology, Gaithersburg, MD.
  • 3. Yu, J. & Tan, K.H. (2013). Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Engineering Structures, 55, 90-106.
  • 4. Yuzbasi, J. (2024). Controlled demolition: novel monitoring and experimental validation of blast-induced full-scale existing high-rise building implosion using numerical finite element simulations. Journal of Civil Structural Health Monitoring, 1-24.
  • 5. Shi, Y. & Jiang, R. (2024). Experimental investigation on progressive collapse performance of RC substructures under blast loading. Structures, 70, 107803.
  • 6. Ellingwood, B.R., Smilowitz, R., Dusenberry, D.O., Duthinh, D., Lew, H.S. & Carino, N.J. (2007). Best practices for reducing the potential for progressive collapse in buildings. National Institute of Standards and Technology, Gaithersburg, 216.
  • 7. Ellingwood, B.R. (2006). Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities, 20(4), 315-323.
  • 8. Yuzbasi, J. (2024). Experimental verification of full‐scale silo structure demolition: Investigating successive column removal with finite element method and progressive collapse simulation through blast load. Structural Concrete, 25(6), 4408-4427.
  • 9. Avcil, F., Işık, E., İzol, R., Büyüksaraç, A., Arkan, E., Arslan, M.H., Aksouylu, C., Eyisüren, O. & Harirchian, E. (2024). Effects of the February 6, 2023, Kahramanmaraş earthquake on structures in Kahramanmaraş city. Natural Hazards, 120(3), 2953-2991.
  • 10. Işık, E., Hadzima-Nyarko, M., Avcil, F., Büyüksaraç, A., Arkan, E., Alkan, H. & Harirchian, E. (2024). Comparison of seismic and structural parameters of settlements in the East Anatolian fault zone in light of the 6 February Kahramanmaraş earthquakes. Infrastructures, 9(12), 219.
  • 11. Yuzbasi, J. (2024). Post-earthquake damage assessment: field observations and recent developments with recommendations from the Kahramanmaraş earthquakes in Türkiye on February 6th, 2023 (Pazarcık M7. 8 and Elbistan M7. 6). Journal of Earthquake Engineering, 1-26.
  • 12. Alashker, Y., El-Tawil, S. & Orsi, G. (2011). Improving the progressive collapse resistance of steel moment frames using FRP. Journal of Constructional Steel Research, 67(3), 401-413.
  • 13. Bao, Y. & Yang, B. (2012). Energy flow in progressive collapse of steel-framed buildings. Engineering Structures, 42, 142-153.
  • 14. Bregoli, D., Lagaros, N.D. & Limongelli, M.P. (2017). Structural robustness of steel-framed modular buildings using the alternative load path method. Engineering Structures, 151, 488-502.
  • 15. Lu, X., Lin, K., Guan, H. & Ye, L. (2005). Progressive collapse resistance of high-rise steel moment frames designed for earthquakes. In Proceedings of the 2005 ASCE Structures Congress, 1-10.
  • 16. Li, Y., Song, R. & Van De Lindt, J.W. (2014). Collapse fragility of steel structures subjected to earthquake mainshock-aftershock sequences. Journal of Structural Engineering, 140(12), 04014095.
  • 17. Stochino, F., Bedon, C., Sagaseta, J. & Honfi, D. (2019). Robustness and resilience of structures under extreme loads. Advances in Civil Engineering, 2019(1), 4291703.
  • 18. Işık, E., Peker, F. & Büyüksaraç, A. (2022). The effect of vertical earthquake motion on steel structures behaviour in different seismic zones. Journal of Advanced Research in Natural and Applied Sciences, 8(3), 527-542.
  • 19. Domaneschi, M., Pellechia, C., De. Iuliis, E., Cimellaro, G.P., Morgese, M., Khalil, A.A. & Ansari, F. (2020): Collapse analysis of the Polcevera viaduct by the applied element method. Engineering Structures, 214, 110659.
  • 20. Yuzbasi, J. & Arslan, H.M. (2025). Applied element method and Finite element method for progressive collapse assessment: A comparative study on the influence of slab types, thicknesses, and damping via three incremental column removals. Structures, 73, 108358).
  • 21. Extreme Loading® for Structures V9 ELS Theoretical Manual, (2022). https://www.extreme loading.com/wp-content/uploads/els-v9-theoretical-manual.pdf
  • 22. Song, B.I. (2010). Experimental and analytical assessment on the progressive collapse potential of existing buildings. Master's thesis. The Ohio State University.
  • 23. General Services Administration, (2016). Alternate path analysis & design guidelines for progressive collapse resistance (Revision 1). Washington, DC: U.S. General Services Administration.
  • 24. American Society of Civil Engineers, (2017). Seismic evaluation and retrofit of existing buildings (ASCE/SEI 41-17). Reston, VA: American Society of Civil Engineers.
  • 25. U.S. Department of Defense, (2009). Design of buildings to resist progressive collapse (UFC 4-023-03, Change 4, 10 June 2024). Washington, DC: U.S. Department of Defense.
  • 26. Meguro, K. & Tagel-Din, H. (2001). Applied element method: A new efficient tool for design of structure considering its failure behavior. Institution of Industrial Science (IIS), 1-20. The University of Tokyo.
  • 27. Meguro, K. & Tagel-Din, H. (2000). Applied element method for structural analysis theory and application for linear materials. Doboku Gakkai Ronbunshu, 2000(647), 31-45.
  • 28. Meguro, K. & Tagel-Din, H. (2001). Applied element simulation of RC structures under cyclic loading. Journal of Structural Engineering, 127(11), 1295-1305.
  • 29. Tagel-Din, H. & Meguro, K. (2000). Applied element method for dynamic large deformation analysis of structures. Doboku Gakkai Ronbunshu, 2000(661), 1-10.
  • 30. Yüzbaşı, J., & Yerli, H.R. (2018). Betonarme yapıların deprem etkisi altında performans analizlerinin yapılması ve güçlendirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 273-286.
  • 31. Akıncı, A.C. & Ünlügenç, U.C. (2023). 6 Şubat 2023 Kahramanmaraş depremleri: sahadan jeolojik veriler, değerlendirme ve Adana için etkileri. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(2), 553-569.

Progressive Collapse and Robustness Analysis of Steel Structures

Yıl 2025, Cilt: 40 Sayı: 2, 429 - 444, 02.07.2025
https://doi.org/10.21605/cukurovaumfd.1694613

Öz

This study investigates the progressive collapse behavior of a five-story, three-dimensional steel moment-resisting frame using the Applied Element Method (AEM). The model represents an existing multi-story full-scale steel structure located in the United States once, incorporating realistic geometric and structural characteristics. The structural system comprises rigid beam-to-column connections, ensuring full moment transfer across joints. The frame geometry includes seven spans in the longitudinal direction and three spans in the transverse direction, with non-uniform bay widths and varying story heights, reflecting a realistic high-rise configuration. Three critical column removal scenarios were modeled: (1) the middle of the short side, (2) the middle of the long side, and (3) a corner column at the first story. AEM was adopted to simulate highly nonlinear phenomena. Removing the middle column on the long side resulted in the highest displacements, underscoring the critical influence of column location on progressive collapse vulnerability and robustness.

Kaynakça

  • 1. Lu, J.X., Wu, H. & Fang, Q. (2022). Progressive collapse of Murrah Federal Building: Revisited. Journal of Building Engineering, 57, 104939.
  • 2. Nist Ncstar, (2005). Final report on the collapse of the World Trade Center Towers. National Construction Safety Team for the Federal Building and Fire Safety Investigation of the World Trade Center Disaster. National Institute of Standards and Technology, Gaithersburg, MD.
  • 3. Yu, J. & Tan, K.H. (2013). Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Engineering Structures, 55, 90-106.
  • 4. Yuzbasi, J. (2024). Controlled demolition: novel monitoring and experimental validation of blast-induced full-scale existing high-rise building implosion using numerical finite element simulations. Journal of Civil Structural Health Monitoring, 1-24.
  • 5. Shi, Y. & Jiang, R. (2024). Experimental investigation on progressive collapse performance of RC substructures under blast loading. Structures, 70, 107803.
  • 6. Ellingwood, B.R., Smilowitz, R., Dusenberry, D.O., Duthinh, D., Lew, H.S. & Carino, N.J. (2007). Best practices for reducing the potential for progressive collapse in buildings. National Institute of Standards and Technology, Gaithersburg, 216.
  • 7. Ellingwood, B.R. (2006). Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities, 20(4), 315-323.
  • 8. Yuzbasi, J. (2024). Experimental verification of full‐scale silo structure demolition: Investigating successive column removal with finite element method and progressive collapse simulation through blast load. Structural Concrete, 25(6), 4408-4427.
  • 9. Avcil, F., Işık, E., İzol, R., Büyüksaraç, A., Arkan, E., Arslan, M.H., Aksouylu, C., Eyisüren, O. & Harirchian, E. (2024). Effects of the February 6, 2023, Kahramanmaraş earthquake on structures in Kahramanmaraş city. Natural Hazards, 120(3), 2953-2991.
  • 10. Işık, E., Hadzima-Nyarko, M., Avcil, F., Büyüksaraç, A., Arkan, E., Alkan, H. & Harirchian, E. (2024). Comparison of seismic and structural parameters of settlements in the East Anatolian fault zone in light of the 6 February Kahramanmaraş earthquakes. Infrastructures, 9(12), 219.
  • 11. Yuzbasi, J. (2024). Post-earthquake damage assessment: field observations and recent developments with recommendations from the Kahramanmaraş earthquakes in Türkiye on February 6th, 2023 (Pazarcık M7. 8 and Elbistan M7. 6). Journal of Earthquake Engineering, 1-26.
  • 12. Alashker, Y., El-Tawil, S. & Orsi, G. (2011). Improving the progressive collapse resistance of steel moment frames using FRP. Journal of Constructional Steel Research, 67(3), 401-413.
  • 13. Bao, Y. & Yang, B. (2012). Energy flow in progressive collapse of steel-framed buildings. Engineering Structures, 42, 142-153.
  • 14. Bregoli, D., Lagaros, N.D. & Limongelli, M.P. (2017). Structural robustness of steel-framed modular buildings using the alternative load path method. Engineering Structures, 151, 488-502.
  • 15. Lu, X., Lin, K., Guan, H. & Ye, L. (2005). Progressive collapse resistance of high-rise steel moment frames designed for earthquakes. In Proceedings of the 2005 ASCE Structures Congress, 1-10.
  • 16. Li, Y., Song, R. & Van De Lindt, J.W. (2014). Collapse fragility of steel structures subjected to earthquake mainshock-aftershock sequences. Journal of Structural Engineering, 140(12), 04014095.
  • 17. Stochino, F., Bedon, C., Sagaseta, J. & Honfi, D. (2019). Robustness and resilience of structures under extreme loads. Advances in Civil Engineering, 2019(1), 4291703.
  • 18. Işık, E., Peker, F. & Büyüksaraç, A. (2022). The effect of vertical earthquake motion on steel structures behaviour in different seismic zones. Journal of Advanced Research in Natural and Applied Sciences, 8(3), 527-542.
  • 19. Domaneschi, M., Pellechia, C., De. Iuliis, E., Cimellaro, G.P., Morgese, M., Khalil, A.A. & Ansari, F. (2020): Collapse analysis of the Polcevera viaduct by the applied element method. Engineering Structures, 214, 110659.
  • 20. Yuzbasi, J. & Arslan, H.M. (2025). Applied element method and Finite element method for progressive collapse assessment: A comparative study on the influence of slab types, thicknesses, and damping via three incremental column removals. Structures, 73, 108358).
  • 21. Extreme Loading® for Structures V9 ELS Theoretical Manual, (2022). https://www.extreme loading.com/wp-content/uploads/els-v9-theoretical-manual.pdf
  • 22. Song, B.I. (2010). Experimental and analytical assessment on the progressive collapse potential of existing buildings. Master's thesis. The Ohio State University.
  • 23. General Services Administration, (2016). Alternate path analysis & design guidelines for progressive collapse resistance (Revision 1). Washington, DC: U.S. General Services Administration.
  • 24. American Society of Civil Engineers, (2017). Seismic evaluation and retrofit of existing buildings (ASCE/SEI 41-17). Reston, VA: American Society of Civil Engineers.
  • 25. U.S. Department of Defense, (2009). Design of buildings to resist progressive collapse (UFC 4-023-03, Change 4, 10 June 2024). Washington, DC: U.S. Department of Defense.
  • 26. Meguro, K. & Tagel-Din, H. (2001). Applied element method: A new efficient tool for design of structure considering its failure behavior. Institution of Industrial Science (IIS), 1-20. The University of Tokyo.
  • 27. Meguro, K. & Tagel-Din, H. (2000). Applied element method for structural analysis theory and application for linear materials. Doboku Gakkai Ronbunshu, 2000(647), 31-45.
  • 28. Meguro, K. & Tagel-Din, H. (2001). Applied element simulation of RC structures under cyclic loading. Journal of Structural Engineering, 127(11), 1295-1305.
  • 29. Tagel-Din, H. & Meguro, K. (2000). Applied element method for dynamic large deformation analysis of structures. Doboku Gakkai Ronbunshu, 2000(661), 1-10.
  • 30. Yüzbaşı, J., & Yerli, H.R. (2018). Betonarme yapıların deprem etkisi altında performans analizlerinin yapılması ve güçlendirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 273-286.
  • 31. Akıncı, A.C. & Ünlügenç, U.C. (2023). 6 Şubat 2023 Kahramanmaraş depremleri: sahadan jeolojik veriler, değerlendirme ve Adana için etkileri. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(2), 553-569.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deprem Mühendisliği, İnşaat Mühendisliğinde Sayısal Modelleme
Bölüm Makaleler
Yazarlar

Jülide Yüzbaşı 0000-0002-4034-5666

Yayımlanma Tarihi 2 Temmuz 2025
Gönderilme Tarihi 7 Mayıs 2025
Kabul Tarihi 16 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 2

Kaynak Göster

APA Yüzbaşı, J. (2025). Progressive Collapse and Robustness Analysis of Steel Structures. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(2), 429-444. https://doi.org/10.21605/cukurovaumfd.1694613