BibTex RIS Cite

Yoğunlaştırılmış Güneş Enerjisi Teknolojisi ve Yatırım Maliyetlerinin Küresel Değerlendirilmesi

Year 2014, Volume: 29 Issue: 1, 39 - 52, 25.07.2016
https://doi.org/10.21605/cukurovaummfd.242861

Abstract

Bugünlerde dünya, güneş enerjisi gibi konvensiyonel olmayan enerji kaynaklarına doğru eğilim göstermektedir. Diğer enerji kaynaklarıyla karşılaştırıldığında güneş enerjisinin en önemli avantajı, herhangi bir çevresel kirlilik oluşturmamasıdır. Bu çalışmada, yoğunlaştırılmış güneş enerjisi teknolojisinin (YGE) dünyadaki mevcut durumu, gelişimi, gelecekteki durumu ve uygulamaları sunulmuştur. Parabolik oluk, fresnel aynaları, güneş kuleleri ve parabolik çanak adı verilen dört ana teknolojiden oluşan yoğunlaştırılmış güneş enerjisi teknolojisi yatırım maliyetleri açısından değerlendirilmiştir. Sonuçta, dünyadaki toplam yenilenebilir kurulu güç kapasitesi içerisinde yoğunlaştırılmış güneş enerjisi kurulu kapasite oranının halen %1’in altında kaldığı; ancak gün geçtikçe bu oranın arttığı gözlenmektedir. Buna ilaveten, YGE’nin diğer yenilenebilir teknolojilere kıyasla nispeten düşük maliyetli ısıl depolama avantajına sahip olduğu görülmektedir

References

  • 1. International Energy Outlook 2013, U.S. Energy Information Administration, DOE/EIA- 0484, 2013, www.eia.gov/ieo/.
  • 2. Technology Roadmap Concentrating Solar Power International Energy Agency, OECD/IEA, 2010.
  • 3. Devabhaktuni V., Alam, M., Depuru, SSSR., Green, RC., Nims, Ds., and Near, C., Solar energy: Trends and Enabling Technologies, Renewable and Sustainable Energy Reviews 19 555–564, 2013.
  • 4. Cherubini, F., Bird, ND., Cowie, A. Jungmeier,. Energy- and Greenhouse GasBased LCA of Biofuel and Bioenergy Systems: Key Issues, Ranges and Recommendations, Resources, Conservation and Recycling, Vol.
  • 53, ElsevierAmsterdam, pp. 434–447, 2009. 5. NEEDS (New Energy Externalities Developments for Sustainability Project) (2009), Final Outcomes, www.needsproject.org.
  • 6. POST (Parliamentary Office of Science and Technology) (2006), Carbon Footprint of Electricity Generation, Postnote N. 268, www.parliament.uk/documents/post/postpn268 . pdf.
  • 7. World Energy Outlook. Executive Summary; 2012, www.worldenergyout look.org/. 8. An Overview of the Desertec Concept. Red paper, 3rd ed.
  • 9. Himri YY, Malik S, Boudghene Stambouli A, Himri S, Draoui B., Review and Use of the Algerian Renewable Energy for Sustainable Development. Renewable and Sustainable Energy Reviews 2009;13:1584–91.
  • 10. Antonis, T., Tomtsia T, Hatziargyriou ND, Poullikkas A, Malamatenios Ch, Giakoumelos E, et al. Review of Best Practices of Solar Electricity Resources Applications in Selected Middle East and North Africa (MENA) countries. Renewable and Sustainable Energy Reviews 2011;15:2838–49.
  • 11. Abidin Ab, KMZ., Yaaseen, R., and Mariah. AN., Prospective Scenarios for the Full Solar Energy Development in Malaysia. Renewable and Sustainable Energy Reviews 2010;14:3023–31.
  • 12. Manuel, RA., and Eduardo. Z., Concentrating Solar Thermal Power. Energy Conversion (19). LLC: Taylor & Francis Group; 2007. 13. El-Ghonemy AMK. Future Sustainable Water Desalination Technologies for the Saudi Arabia: a review. Renewable and Sustainable Energy Reviews 2012;16:6566-97. 14.Chennan, L., Yogi, G., and Elias, S., Solar Assisted Sea Water Desalination: A Review. Renewable and Sustainable Energy Reviews 2013;19:136–63.
  • 15. www.cspworld.com. (accessed 2013)
  • 16.Behar, O., Khellaf, A., and Mohammedi, K., Review of Studies on Central Receiver Solar Thermal Power Plants, Renewable and Sustainable Energy Reviews 23 (2013) 12-39.
  • 17.Renewables 2013 “Global Status Report” Ren 21 Renewable Energy Policy Network for the 21st century.
  • 18. Power Technologies Energy Data Bank, Fourth Edition, National Renewable Energy Laboratory (NREL), August 2006, NREL/TP- 620-39728.
  • 19.Bank Sarasin, Solar Industry: Survival of the Fittest in the Fiercely Competitive Marketplace (Basel, Switzerland: November 2011); Protermosolar, op. cit. note 7.
  • 20. Macknick, J., Newmark, R., and Turchi, C., Water Consumption Impacts of Renewable Technologies: The Case of CSP, presentation at AWRA 2011 Spring Specialty Conference, Baltimore, MD, 18–20 April 2011
  • 21. Morse, F., Abengoa Solar, Washington, DC, personal communication with REN21, March 2013.
  • 22. Hashem, H., “Grid Parity Solar: CSP Gains on PV,” CSP Today, 25 May 2012, at http://social.csptoday.com.
  • 23. Llorente García, I., Álvarez, J. L., and Blanco D., Performance Model for Parabolic Trough Solar Thermal Power Plants with Thermal Storage: Comparison to Operating Plant Data. Solar Energy 85: 2443-2460, 2011.
  • 24. Morin, G., Techno-economic Design Optimization of Solar Thermal Power Plants, Dissertation, University of Braunschweig, Fraunhofer Verlag, 2011.

The Global Evaluation of Concentrating Solar Power Technology and its Investment Costs

Year 2014, Volume: 29 Issue: 1, 39 - 52, 25.07.2016
https://doi.org/10.21605/cukurovaummfd.242861

Abstract

Nowadays the world trends toward the non-conventional energy resources such as solar energy. The most advantage of solar energy compared to other forms of clean energy is that there is no environmental pollution. In this study, the current status, developments, future projections and applications of Concentrating Solar Power (CSP) technology in the world were presented. CSP technology, consisting of four main CSP technology families called as parabolic troughs, lineer frensel reflectors, solar towers and parabolic dishes was evaluated in terms of investment costs. As a result of this study, CSP is still under 1% within the total global installed renewable power capacity. However, a constant increase is observed in this percentage ratio day by day. Also, CSP has the advantage of relatively low cost thermal storage, compared to other renewable technologies

References

  • 1. International Energy Outlook 2013, U.S. Energy Information Administration, DOE/EIA- 0484, 2013, www.eia.gov/ieo/.
  • 2. Technology Roadmap Concentrating Solar Power International Energy Agency, OECD/IEA, 2010.
  • 3. Devabhaktuni V., Alam, M., Depuru, SSSR., Green, RC., Nims, Ds., and Near, C., Solar energy: Trends and Enabling Technologies, Renewable and Sustainable Energy Reviews 19 555–564, 2013.
  • 4. Cherubini, F., Bird, ND., Cowie, A. Jungmeier,. Energy- and Greenhouse GasBased LCA of Biofuel and Bioenergy Systems: Key Issues, Ranges and Recommendations, Resources, Conservation and Recycling, Vol.
  • 53, ElsevierAmsterdam, pp. 434–447, 2009. 5. NEEDS (New Energy Externalities Developments for Sustainability Project) (2009), Final Outcomes, www.needsproject.org.
  • 6. POST (Parliamentary Office of Science and Technology) (2006), Carbon Footprint of Electricity Generation, Postnote N. 268, www.parliament.uk/documents/post/postpn268 . pdf.
  • 7. World Energy Outlook. Executive Summary; 2012, www.worldenergyout look.org/. 8. An Overview of the Desertec Concept. Red paper, 3rd ed.
  • 9. Himri YY, Malik S, Boudghene Stambouli A, Himri S, Draoui B., Review and Use of the Algerian Renewable Energy for Sustainable Development. Renewable and Sustainable Energy Reviews 2009;13:1584–91.
  • 10. Antonis, T., Tomtsia T, Hatziargyriou ND, Poullikkas A, Malamatenios Ch, Giakoumelos E, et al. Review of Best Practices of Solar Electricity Resources Applications in Selected Middle East and North Africa (MENA) countries. Renewable and Sustainable Energy Reviews 2011;15:2838–49.
  • 11. Abidin Ab, KMZ., Yaaseen, R., and Mariah. AN., Prospective Scenarios for the Full Solar Energy Development in Malaysia. Renewable and Sustainable Energy Reviews 2010;14:3023–31.
  • 12. Manuel, RA., and Eduardo. Z., Concentrating Solar Thermal Power. Energy Conversion (19). LLC: Taylor & Francis Group; 2007. 13. El-Ghonemy AMK. Future Sustainable Water Desalination Technologies for the Saudi Arabia: a review. Renewable and Sustainable Energy Reviews 2012;16:6566-97. 14.Chennan, L., Yogi, G., and Elias, S., Solar Assisted Sea Water Desalination: A Review. Renewable and Sustainable Energy Reviews 2013;19:136–63.
  • 15. www.cspworld.com. (accessed 2013)
  • 16.Behar, O., Khellaf, A., and Mohammedi, K., Review of Studies on Central Receiver Solar Thermal Power Plants, Renewable and Sustainable Energy Reviews 23 (2013) 12-39.
  • 17.Renewables 2013 “Global Status Report” Ren 21 Renewable Energy Policy Network for the 21st century.
  • 18. Power Technologies Energy Data Bank, Fourth Edition, National Renewable Energy Laboratory (NREL), August 2006, NREL/TP- 620-39728.
  • 19.Bank Sarasin, Solar Industry: Survival of the Fittest in the Fiercely Competitive Marketplace (Basel, Switzerland: November 2011); Protermosolar, op. cit. note 7.
  • 20. Macknick, J., Newmark, R., and Turchi, C., Water Consumption Impacts of Renewable Technologies: The Case of CSP, presentation at AWRA 2011 Spring Specialty Conference, Baltimore, MD, 18–20 April 2011
  • 21. Morse, F., Abengoa Solar, Washington, DC, personal communication with REN21, March 2013.
  • 22. Hashem, H., “Grid Parity Solar: CSP Gains on PV,” CSP Today, 25 May 2012, at http://social.csptoday.com.
  • 23. Llorente García, I., Álvarez, J. L., and Blanco D., Performance Model for Parabolic Trough Solar Thermal Power Plants with Thermal Storage: Comparison to Operating Plant Data. Solar Energy 85: 2443-2460, 2011.
  • 24. Morin, G., Techno-economic Design Optimization of Solar Thermal Power Plants, Dissertation, University of Braunschweig, Fraunhofer Verlag, 2011.
There are 21 citations in total.

Details

Other ID JA34AP85MM
Journal Section Articles
Authors

Abdulkadir Yaşar This is me

Mehmet Bilgili This is me

Arif Özbek This is me

Publication Date July 25, 2016
Published in Issue Year 2014 Volume: 29 Issue: 1

Cite

APA Yaşar, A., Bilgili, M., & Özbek, A. (2016). Yoğunlaştırılmış Güneş Enerjisi Teknolojisi ve Yatırım Maliyetlerinin Küresel Değerlendirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 29(1), 39-52. https://doi.org/10.21605/cukurovaummfd.242861
AMA Yaşar A, Bilgili M, Özbek A. Yoğunlaştırılmış Güneş Enerjisi Teknolojisi ve Yatırım Maliyetlerinin Küresel Değerlendirilmesi. cukurovaummfd. July 2016;29(1):39-52. doi:10.21605/cukurovaummfd.242861
Chicago Yaşar, Abdulkadir, Mehmet Bilgili, and Arif Özbek. “Yoğunlaştırılmış Güneş Enerjisi Teknolojisi Ve Yatırım Maliyetlerinin Küresel Değerlendirilmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 29, no. 1 (July 2016): 39-52. https://doi.org/10.21605/cukurovaummfd.242861.
EndNote Yaşar A, Bilgili M, Özbek A (July 1, 2016) Yoğunlaştırılmış Güneş Enerjisi Teknolojisi ve Yatırım Maliyetlerinin Küresel Değerlendirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 29 1 39–52.
IEEE A. Yaşar, M. Bilgili, and A. Özbek, “Yoğunlaştırılmış Güneş Enerjisi Teknolojisi ve Yatırım Maliyetlerinin Küresel Değerlendirilmesi”, cukurovaummfd, vol. 29, no. 1, pp. 39–52, 2016, doi: 10.21605/cukurovaummfd.242861.
ISNAD Yaşar, Abdulkadir et al. “Yoğunlaştırılmış Güneş Enerjisi Teknolojisi Ve Yatırım Maliyetlerinin Küresel Değerlendirilmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 29/1 (July 2016), 39-52. https://doi.org/10.21605/cukurovaummfd.242861.
JAMA Yaşar A, Bilgili M, Özbek A. Yoğunlaştırılmış Güneş Enerjisi Teknolojisi ve Yatırım Maliyetlerinin Küresel Değerlendirilmesi. cukurovaummfd. 2016;29:39–52.
MLA Yaşar, Abdulkadir et al. “Yoğunlaştırılmış Güneş Enerjisi Teknolojisi Ve Yatırım Maliyetlerinin Küresel Değerlendirilmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 29, no. 1, 2016, pp. 39-52, doi:10.21605/cukurovaummfd.242861.
Vancouver Yaşar A, Bilgili M, Özbek A. Yoğunlaştırılmış Güneş Enerjisi Teknolojisi ve Yatırım Maliyetlerinin Küresel Değerlendirilmesi. cukurovaummfd. 2016;29(1):39-52.