Research Article
BibTex RIS Cite

Effects of a Square Groove at the Stagnation Point of a Circular Cylinder on its Near Wake

Year 2016, Volume: 31 Issue: 1, 451 - 458, 15.06.2016
https://doi.org/10.21605/cukurovaummfd.319357

Abstract

In the present study, effects of single longitudinal groove placed at its forward stagnation point on the cylinder wake are investigated. Two different square groove sizes were tested using the particle image velocimetry (PIV) technique and compared with the case of bare cylinder. The cylinders are immersed in a uniform flow field with the Reynolds number, Re=5000. The wakes of these cylinders are evaluated using time-averaged flow data such as vorticity, <ω>, streamline, <Ψ>, components of streamwise, <U/Uo> and transverse, <V/Uo> dimensionless velocity, Reynolds stresses, <u’v’> and turbulent kinetic energy, TKE. In addition, the Strouhal numbers are calculated using frequencies of Karman vortex shedding, which are obtained from single point spectral analysis. It is revealed that the presence of square groove located at forward stagnation point of a circular cylinder has significant effect on the wake formation and turbulence statistics. It is observed that Karman vortex shedding frequency, fk is also influenced on presence of the groove.

References

  • 1. Roshko A. 1993. Perspectives on Bluff Body Aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics 49:79-100.
  • 2. Leung Y.C., Wong C.H., Ko N.W.M. 1997. Characteristics of Flows Over an Asymmetrically Grooved Circular Cylinder in the Transitional Regimes. Journal of Wind Engineering and Industrial Aerodynamics 69-71: 169-178.
  • 3. Kimura T., Tsutahara M., 1990. Fluid Dynamic Effects of Grooves on Circular Cylinder Surface. AIAA Journal 29:2062-2068.
  • 4. Leung Y.C., Ko N.W.M. 1991. Near Wall Characteristics of Flow Over Grooved Circular Cylinder. Experiments in Fluids 10:322-332.
  • 5. Leung Y.C., Ko N.W.M., Tang K.M. 1992. Flow Past Circular Cylinder with Different Surface Configurations. Trans. ASME-Journal of Fluids Engineering 114: 170-177.
  • 6. Lim H.C., Lee S.J. 2002. Flow Control of Circular Cylinder with Longitudinal Grooved Surfaces. AIAA Journal 40:2027-2036,
  • 7. Lee S.J., Lim H.C., Han M., Lee S.S. 2005. Flow Control of Circular Cylinder with a V-Grooved Micro-Riblet Film. Fluid Dynamics Research 37:246-266.
  • 8. Yamagashi Y., Oki M. 2007. Numerical Simulation of Flow Around a Circular Cylinder with Curved Sectional Grooves. Journal of Visualization 10:179-186.
  • 9. Seo S-H., Nam C-D., Jan J-Y., Hong C-H. 2013. Drag Reduction of a Bluff Body by Grooves Laid Out by Design of Experiment. Trans. ASME-Journal of Fluids Engineering 135: 111202-1-10.
  • 10. Canpolat C. 2015. Characteristics of Flow Past a Circular Cylinder with a Rectangular Groove. Effects of a Square Groove at the Stagnation Point of a Circular Cylinder on its Near Wake
  • 11. Zhou B., Wang X., Guo W., Gho W.M., Tan S.K. 2015. Experimental Study on Flow Past a Circular Cylinder with Rough Surface. Ocean Engineering, 109:7-13.
  • 12. Gad-el-Hak M., Bushnell D.M. 1991. Separation Control. Trans. ASME-J Fluids Eng 113:5-30.
  • 13. Lin J.C. 2002. Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation. Progress in Aerospace Sciences 38:389-420.
  • 14. Souverein L.J., Debieve J.F. 2010. Effect of Air Jet Vortex Generators on a Shock Wave Boundary Layer Interaction Experiments of Fluids 49:1053-1064.
  • 15. Bur R., Coponet D., Carpels Y. 2009. Separation Control by Vortex Generator Devices in a Transonic Channel Flow. Shock Waves 19:521-530.
  • 16. Lin J.C., Robinson S.K., McGhee R.J., Valarezo W.O. 1994. Separation Control on High-Lift Airfoils Via Micro-Vortex Generators. Journal of Aircraft 31:1317–1323.
  • 17. Choi J., Jeon W.P., Choi H. 2008. Control of Flow Over a Bluff Body. Annual Review Fluid Mechanics 40:113-139,
  • 18. Achenbach E. Experiments on the flow Past Spheres at Very High Reynolds Numbers. J. Fluid Mech. 54:565–75,1972.
  • 19. Achenbach E. 1974. The Effect of Surface Roughness and Tunnel Blockage on the Flow Past Spheres. J. Fluid Mech. 65:113–25.
  • 20. Choi J., Jeon W.P., Choi H. 2006. Mechanism of Drag Reduction by Dimples on a Sphere. Physics of Fluids 18:041702.
  • 21. Sahin B., Ozturk N.A., Akilli H. 2007. Horseshoe Vortex System in the Vicinity of The Vertical Cylinder Mounted on a Flat Plate. Flow Measurement and Instrumentation 18:57-68.
  • 22. Parnaudeau P., Carlier J., Heitz D., 2008. Lamballais E. Experimental and Numerical Studies of the Flow Over a Circular Cylinder at Reynolds Number 3900. Physics of Fluids. 20:085101-1-14.
  • 23. Dong S., Karniadakis G.E., Ekmekci A., Rockwell D., 2006. A Combined Direct Numerical Simulation-Particle Image Velocimetry Study of the Turbulent Near Wake. Journal of Fluid Mechanics 569:185-207,
  • 24. Williamson C.H.K., 1996. Vortex Dynamics in the Cylinder Wake. Annual Review Fluid Mechanics 28:477-539.

Durma Noktasına Yerleştirilen Bir Çentiğin Silindirin Ölü Akış Bölgesine Etkileri

Year 2016, Volume: 31 Issue: 1, 451 - 458, 15.06.2016
https://doi.org/10.21605/cukurovaummfd.319357

Abstract

Bu çalışmada, bir dairesel silindirin ön durma noktasına yerleştiriliş tekil eksenel çentiğin silindirin ölü akış bölgesine etkileri araştırılmıştır. İki farklı kare kesitli çentik boyutu parçacık görüntülemeli hız ölçme tekniği ile test edilmiş ve çentik olmayan silindir durumu ile karşılaştırılmışlardır. Silindirler Reynolds sayısı, Re=5000 olan serbest akış bölgesine yerleştirilmişlerdir. Bu silindirlerin ölü akış bölgeleri vortisite, <ω>, akım çizgileri, <Ψ>, akım doğrultusundaki, <U/Uo> ve akıma dik yöndeki, <V/Uo>, boyutsuz hız bileşenleri, Reynolds gerilmeleri, <u’v’>, ve türbülans kinetik enerji, TKE gibi zaman ortalamalı akış verileri ile incelenmişlerdir. Ek olarak, tekil nokta spektral analizinden elde edilen Karman girdap kopma frekansları kullanılarak Strouhal sayıları hesaplanmıştır. Silindirin ön durma noktasına yerleştirilen kare kesitli çentik ölü akış bölgesinin oluşumuna ve türbülans istatistiklerine önemli etkileri olduğu görülmektedir. Çentiğin Karman girdap kopma frekansının, fk üzerinde de etkisi olduğu görülmiştür.

References

  • 1. Roshko A. 1993. Perspectives on Bluff Body Aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics 49:79-100.
  • 2. Leung Y.C., Wong C.H., Ko N.W.M. 1997. Characteristics of Flows Over an Asymmetrically Grooved Circular Cylinder in the Transitional Regimes. Journal of Wind Engineering and Industrial Aerodynamics 69-71: 169-178.
  • 3. Kimura T., Tsutahara M., 1990. Fluid Dynamic Effects of Grooves on Circular Cylinder Surface. AIAA Journal 29:2062-2068.
  • 4. Leung Y.C., Ko N.W.M. 1991. Near Wall Characteristics of Flow Over Grooved Circular Cylinder. Experiments in Fluids 10:322-332.
  • 5. Leung Y.C., Ko N.W.M., Tang K.M. 1992. Flow Past Circular Cylinder with Different Surface Configurations. Trans. ASME-Journal of Fluids Engineering 114: 170-177.
  • 6. Lim H.C., Lee S.J. 2002. Flow Control of Circular Cylinder with Longitudinal Grooved Surfaces. AIAA Journal 40:2027-2036,
  • 7. Lee S.J., Lim H.C., Han M., Lee S.S. 2005. Flow Control of Circular Cylinder with a V-Grooved Micro-Riblet Film. Fluid Dynamics Research 37:246-266.
  • 8. Yamagashi Y., Oki M. 2007. Numerical Simulation of Flow Around a Circular Cylinder with Curved Sectional Grooves. Journal of Visualization 10:179-186.
  • 9. Seo S-H., Nam C-D., Jan J-Y., Hong C-H. 2013. Drag Reduction of a Bluff Body by Grooves Laid Out by Design of Experiment. Trans. ASME-Journal of Fluids Engineering 135: 111202-1-10.
  • 10. Canpolat C. 2015. Characteristics of Flow Past a Circular Cylinder with a Rectangular Groove. Effects of a Square Groove at the Stagnation Point of a Circular Cylinder on its Near Wake
  • 11. Zhou B., Wang X., Guo W., Gho W.M., Tan S.K. 2015. Experimental Study on Flow Past a Circular Cylinder with Rough Surface. Ocean Engineering, 109:7-13.
  • 12. Gad-el-Hak M., Bushnell D.M. 1991. Separation Control. Trans. ASME-J Fluids Eng 113:5-30.
  • 13. Lin J.C. 2002. Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation. Progress in Aerospace Sciences 38:389-420.
  • 14. Souverein L.J., Debieve J.F. 2010. Effect of Air Jet Vortex Generators on a Shock Wave Boundary Layer Interaction Experiments of Fluids 49:1053-1064.
  • 15. Bur R., Coponet D., Carpels Y. 2009. Separation Control by Vortex Generator Devices in a Transonic Channel Flow. Shock Waves 19:521-530.
  • 16. Lin J.C., Robinson S.K., McGhee R.J., Valarezo W.O. 1994. Separation Control on High-Lift Airfoils Via Micro-Vortex Generators. Journal of Aircraft 31:1317–1323.
  • 17. Choi J., Jeon W.P., Choi H. 2008. Control of Flow Over a Bluff Body. Annual Review Fluid Mechanics 40:113-139,
  • 18. Achenbach E. Experiments on the flow Past Spheres at Very High Reynolds Numbers. J. Fluid Mech. 54:565–75,1972.
  • 19. Achenbach E. 1974. The Effect of Surface Roughness and Tunnel Blockage on the Flow Past Spheres. J. Fluid Mech. 65:113–25.
  • 20. Choi J., Jeon W.P., Choi H. 2006. Mechanism of Drag Reduction by Dimples on a Sphere. Physics of Fluids 18:041702.
  • 21. Sahin B., Ozturk N.A., Akilli H. 2007. Horseshoe Vortex System in the Vicinity of The Vertical Cylinder Mounted on a Flat Plate. Flow Measurement and Instrumentation 18:57-68.
  • 22. Parnaudeau P., Carlier J., Heitz D., 2008. Lamballais E. Experimental and Numerical Studies of the Flow Over a Circular Cylinder at Reynolds Number 3900. Physics of Fluids. 20:085101-1-14.
  • 23. Dong S., Karniadakis G.E., Ekmekci A., Rockwell D., 2006. A Combined Direct Numerical Simulation-Particle Image Velocimetry Study of the Turbulent Near Wake. Journal of Fluid Mechanics 569:185-207,
  • 24. Williamson C.H.K., 1996. Vortex Dynamics in the Cylinder Wake. Annual Review Fluid Mechanics 28:477-539.
There are 24 citations in total.

Details

Journal Section Articles
Authors

Çetin Canpolat

Publication Date June 15, 2016
Published in Issue Year 2016 Volume: 31 Issue: 1

Cite

APA Canpolat, Ç. (2016). Durma Noktasına Yerleştirilen Bir Çentiğin Silindirin Ölü Akış Bölgesine Etkileri. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(1), 451-458. https://doi.org/10.21605/cukurovaummfd.319357
AMA Canpolat Ç. Durma Noktasına Yerleştirilen Bir Çentiğin Silindirin Ölü Akış Bölgesine Etkileri. cukurovaummfd. June 2016;31(1):451-458. doi:10.21605/cukurovaummfd.319357
Chicago Canpolat, Çetin. “Durma Noktasına Yerleştirilen Bir Çentiğin Silindirin Ölü Akış Bölgesine Etkileri”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31, no. 1 (June 2016): 451-58. https://doi.org/10.21605/cukurovaummfd.319357.
EndNote Canpolat Ç (June 1, 2016) Durma Noktasına Yerleştirilen Bir Çentiğin Silindirin Ölü Akış Bölgesine Etkileri. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31 1 451–458.
IEEE Ç. Canpolat, “Durma Noktasına Yerleştirilen Bir Çentiğin Silindirin Ölü Akış Bölgesine Etkileri”, cukurovaummfd, vol. 31, no. 1, pp. 451–458, 2016, doi: 10.21605/cukurovaummfd.319357.
ISNAD Canpolat, Çetin. “Durma Noktasına Yerleştirilen Bir Çentiğin Silindirin Ölü Akış Bölgesine Etkileri”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31/1 (June 2016), 451-458. https://doi.org/10.21605/cukurovaummfd.319357.
JAMA Canpolat Ç. Durma Noktasına Yerleştirilen Bir Çentiğin Silindirin Ölü Akış Bölgesine Etkileri. cukurovaummfd. 2016;31:451–458.
MLA Canpolat, Çetin. “Durma Noktasına Yerleştirilen Bir Çentiğin Silindirin Ölü Akış Bölgesine Etkileri”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 31, no. 1, 2016, pp. 451-8, doi:10.21605/cukurovaummfd.319357.
Vancouver Canpolat Ç. Durma Noktasına Yerleştirilen Bir Çentiğin Silindirin Ölü Akış Bölgesine Etkileri. cukurovaummfd. 2016;31(1):451-8.