Araştırma Makalesi
BibTex RIS Kaynak Göster

Photonic Crystal Slab Biosensors and its Applications

Yıl 2017, Cilt: 32 Sayı: 1, 133 - 140, 15.03.2017
https://doi.org/10.21605/cukurovaummfd.310070

Öz

In this study, filling factor, sensitivity, quality factor, and local density of states variation depending on resonance frequency changing refractive index of liquid medium and radius of spherical silver metal nanoparticle inside unit cell for titanium dioxide (TiO2) photonic crystal slab biosensor device is investigated. This structure is typically used for protein-protein interaction, display of primitive cells, cancer cell metastasis, enzyme detection, Deoxyribonucleic acid (DNA) microarrays. Proposed calculations include a square lattice of air holes created in two-dimensional TiO2 photonic crystal structure and a small spherical sphere nanoparticle into the air holes is put in order to see shift in resonant wavelength’s. Lattice constant (a= 1 μm) was used in the calculations. Analyses have been performed in the wavelength range of 1500-1550 nm. The calculations were made by software MIT Electromagnetic Equation Propagation based finite-difference time-domain method.

Kaynakça

  • 1. Yun, M., Wan, Y., Liang, J., Xia, F., Liu, M., Ren, L., 2012. Multi-Channel Biosensor Based on Photonic Crystal Waveguide and Microcavites, Optik, vol. 123, pp. 1920-1922.
  • 2. See, G. G., Naughty, M. S., Tang, T., Bonita, Y., Joo, J., Trefonas, P., Deshpande, K., Kenis, P. J. A., Nuzzo, R. G., Cunningham, B. T., 2015. Region Specific Enhancement of Quantum Dot Emission using Interleaved Two-Dimensional Photonic Crystals, Applied Optics, vol. 54, no. 9, pp. 2302-2308.
  • 3. Chen, W., Long, K. D., Lu, M., Chaudhery, V., Yu, H., Choi, J. S., Polans, J., Zhuo, Y., Harley, B. A., Cunningham, B. T., 2013. Photonic Crystal Enhanced Microscopy for Imaging of live cell adhesion, Analyst, vol. 138, no. 20. pp. 5886-5894.
  • 4. Cunningham, B. T., Zhang, M., Zhuo, Y., Kwon, L., Race, C., 2014. Review of recent advances in Biosensing with Photonic Crystals, IEEE Sensors Journal, 2014 IEEE Sensors Conference, Doi. 10.1109/JSEN.2015. 2429738, April 2015.
  • 5. Zhang, M., Peh, J., Hergenrother, P. J., Cunningham, B. T., 2014. Detection of Protein-Small Molecule Binding using a Self-Referencing External Cavity Laser Biosensor, J. Am. Chem. Soc., vol. 136, pp. 5840-5843.
  • 6. Peterson, R. D., Cunningham, B. T., Andrade, J., 2014. A Photonic Crystal Biosensor Assay for Ferritin Utilizing Iron-Oxide Nano Particles, Biosens. and Bioelectron., Vol. 56, pp. 320-327.
  • 7. Shamah, S. M., Cunningham, B. T., 2011. Label-free Cell-based Assays using Photonic Crystal Optical Biosensors, Analyst, vol. 136, pp. 1090-1102.
  • 8. Tan, Y., Sutanto, E., Alleyne, A. G., Cunningham, B. T., 2014. Photonic Crystal Enhancement of a Homogeneous Fluorescent Assay using Submicron Fluid Channels Fabricated by E-jet Patterning, J. Biophotonics, Vol. 3-4, pp. 266-275.
  • 9. Pineda, M. F., Chan, L. L., Kuhlenschmidt, T., Kuhlenschmidt, M., Cunningham, B.T., 2009. Rapid Label-free Selective Detection of Porcine Rotavirus using Photonic Crystal Biosensors, IEEE Sensors Journal, vol. 9, no. 4, pp. 470-477.
  • 10. Jardinier, E., Pandraud, G., Pham, M. H., French, P. J., Sarro, P. M., 2009. Atomic Layer Deposition of TiO2 Photonic Crystal Waveguide Biosensors, J. Phys., Conf. Series 187, 012043.
  • 11. Kafi, A. K. M., Wu, G., Chen, A., 2008. A Novel Hydrogen Peroxide Biosensor Based on the Immobilization of Horseradish Peroxidase onto Au-modified Titanium Dioxide Nanotub Arrays, Biosens. Bioelectron., vol. 24, pp. 566-571.
  • 12. Cunningham, B. T., Li, P., Schulz, S., Lin, B., Baird, C., Gerstenmaier, J., Genick, C., Wang, F., Fine, E., Laing, L., 2004. Label-free Assays on the BIND System, J. Biomol. Screen., vol. 9, pp. 481-490.
  • 13. Na, Z., Tao, Y., Kui, J., Cai-Xia, S., 2010. Electrochemical Deoxyribonucleic Acid Biosensor Based on Multiwalled Carbon Nanotubes/Ag-TiO2 Composite Film for Label-Free Phosphinothricin Acetyltransferase Gene Detection by Electrochemical Impedance Spectroscopy, Chin. J. Anal. Chem., vol. 38, no. 3, pp. 301-306.
  • 14. Zhuo, Y., Hu, H., Chen, W., Lu, M., Tian, L., Yu, H., Long, K. D., Chow, E., W. King, P., Singamaneni, S., Cunningham, B. T., 2014. Single Nano Particle Detection using Photonic Crystal Enhanced Microscopy, Analyst, vol. 139, no. 5, pp. 1007-1015.
  • 15. Chaudhery, V., George, S., Lu, M., Pokhriyal, A., Cunningham, B.T., 2013. Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence, Sensors, vol. 13, pp. 5561-5584.
  • 16. Johnson, S. G., Fan, S. H., Villeneuve, P. R., Joannopoulos, J. D., Kolodziejski, L. A., 1999. Guided Modes in Photonic Crystal Slabs, Phys. Rev. B., vol. 60. no. 8, 5751–5758.
  • 17. Fan, S., Joannopoulos, J. D., 2002. Analysis of Guided Resonances in Photonic Crystal Slabs, Phys. Rev. B., vol. 65 no. 23, pp. 235112(1)-235112(8).
  • 18. Mortensen, N. A., Xiao, S. S., Pedersen, J., 2008. Liquid-infiltrated Photonic Crystals: Enhanced Light-Matter Interactions for Lab-on-a-chip Applications, Microfluid. Nanofluid., vol. 4, no. 1-2, pp. 117–127.
  • 19. Qiu, P., Wang, G., Lu, J., Wang, H., 2012. Local Density of States in Photonic Crystal Cavity, Front. Optoelectron., vol. 5, no. 3, pp. 341-344.
  • 20. http://ab-initio.mit.edu/MEEP/Tutorial,
  • 21. Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., Johnson, S. G., 2010. MEEP: A Flexible, Free-software Package for Electromagnetic Simulations by the FDTD Method, Comput. Phys. Commun., vol. 181, pp. 687–702.
  • 22. Joannopulous, J. D., Meade, R. D., Winn, J. N., 1995. Photonic Crystals: Molding the Flow of Light, University Press, Princeton.

Fotonik Kristal Levhalı Biyosensörler ve Uygulamaları

Yıl 2017, Cilt: 32 Sayı: 1, 133 - 140, 15.03.2017
https://doi.org/10.21605/cukurovaummfd.310070

Öz

Bu çalışmada, fotonik kristalden tasarlanan biyosensör cihazı için rezonans frekansını değiştiren sıvı ortamın kırılma indisine ve titanyum dioksit (TiO2) birim hücre içindeki küresel gümüş metal nanopartikülünün yarıçapına bağlı olarak değişen dolgu faktörü, duyarlılık, kalite faktörü ve lokal yoğunluk incelendi. Bu yapı tipik olarak protein-protein etkileşimi, ilkel hücrelerin görüntülenmesi, kanser hücresi metastazının var olup olmadığının, enzim ve Deoksiribonükleik asit (DNA) mikrodizilerin belirlenmesi için kullanılır. Önerilen hesaplamalar, rezonant dalga boyundaki kaymayı görmek için iki boyutlu TiO2 fotonik kristal yapısında yaratılan boşluklarının kare örgüsünü ve hava boşluklarına yerleştirilen küçük bir küresel nanopartikülünü kapsamaktadır. Hesaplamalarda örgü sabiti olarak (a= 1 μm) kullanıldı. Analizler 1500-1550 nm dalga boyu aralığında yapıldı. Hesaplamalar, MIT Elektromanyetik Denklem Yayılımına dayalı zamanda sonlu farklar yöntemi yazılımı ile yapılmıştır.

Kaynakça

  • 1. Yun, M., Wan, Y., Liang, J., Xia, F., Liu, M., Ren, L., 2012. Multi-Channel Biosensor Based on Photonic Crystal Waveguide and Microcavites, Optik, vol. 123, pp. 1920-1922.
  • 2. See, G. G., Naughty, M. S., Tang, T., Bonita, Y., Joo, J., Trefonas, P., Deshpande, K., Kenis, P. J. A., Nuzzo, R. G., Cunningham, B. T., 2015. Region Specific Enhancement of Quantum Dot Emission using Interleaved Two-Dimensional Photonic Crystals, Applied Optics, vol. 54, no. 9, pp. 2302-2308.
  • 3. Chen, W., Long, K. D., Lu, M., Chaudhery, V., Yu, H., Choi, J. S., Polans, J., Zhuo, Y., Harley, B. A., Cunningham, B. T., 2013. Photonic Crystal Enhanced Microscopy for Imaging of live cell adhesion, Analyst, vol. 138, no. 20. pp. 5886-5894.
  • 4. Cunningham, B. T., Zhang, M., Zhuo, Y., Kwon, L., Race, C., 2014. Review of recent advances in Biosensing with Photonic Crystals, IEEE Sensors Journal, 2014 IEEE Sensors Conference, Doi. 10.1109/JSEN.2015. 2429738, April 2015.
  • 5. Zhang, M., Peh, J., Hergenrother, P. J., Cunningham, B. T., 2014. Detection of Protein-Small Molecule Binding using a Self-Referencing External Cavity Laser Biosensor, J. Am. Chem. Soc., vol. 136, pp. 5840-5843.
  • 6. Peterson, R. D., Cunningham, B. T., Andrade, J., 2014. A Photonic Crystal Biosensor Assay for Ferritin Utilizing Iron-Oxide Nano Particles, Biosens. and Bioelectron., Vol. 56, pp. 320-327.
  • 7. Shamah, S. M., Cunningham, B. T., 2011. Label-free Cell-based Assays using Photonic Crystal Optical Biosensors, Analyst, vol. 136, pp. 1090-1102.
  • 8. Tan, Y., Sutanto, E., Alleyne, A. G., Cunningham, B. T., 2014. Photonic Crystal Enhancement of a Homogeneous Fluorescent Assay using Submicron Fluid Channels Fabricated by E-jet Patterning, J. Biophotonics, Vol. 3-4, pp. 266-275.
  • 9. Pineda, M. F., Chan, L. L., Kuhlenschmidt, T., Kuhlenschmidt, M., Cunningham, B.T., 2009. Rapid Label-free Selective Detection of Porcine Rotavirus using Photonic Crystal Biosensors, IEEE Sensors Journal, vol. 9, no. 4, pp. 470-477.
  • 10. Jardinier, E., Pandraud, G., Pham, M. H., French, P. J., Sarro, P. M., 2009. Atomic Layer Deposition of TiO2 Photonic Crystal Waveguide Biosensors, J. Phys., Conf. Series 187, 012043.
  • 11. Kafi, A. K. M., Wu, G., Chen, A., 2008. A Novel Hydrogen Peroxide Biosensor Based on the Immobilization of Horseradish Peroxidase onto Au-modified Titanium Dioxide Nanotub Arrays, Biosens. Bioelectron., vol. 24, pp. 566-571.
  • 12. Cunningham, B. T., Li, P., Schulz, S., Lin, B., Baird, C., Gerstenmaier, J., Genick, C., Wang, F., Fine, E., Laing, L., 2004. Label-free Assays on the BIND System, J. Biomol. Screen., vol. 9, pp. 481-490.
  • 13. Na, Z., Tao, Y., Kui, J., Cai-Xia, S., 2010. Electrochemical Deoxyribonucleic Acid Biosensor Based on Multiwalled Carbon Nanotubes/Ag-TiO2 Composite Film for Label-Free Phosphinothricin Acetyltransferase Gene Detection by Electrochemical Impedance Spectroscopy, Chin. J. Anal. Chem., vol. 38, no. 3, pp. 301-306.
  • 14. Zhuo, Y., Hu, H., Chen, W., Lu, M., Tian, L., Yu, H., Long, K. D., Chow, E., W. King, P., Singamaneni, S., Cunningham, B. T., 2014. Single Nano Particle Detection using Photonic Crystal Enhanced Microscopy, Analyst, vol. 139, no. 5, pp. 1007-1015.
  • 15. Chaudhery, V., George, S., Lu, M., Pokhriyal, A., Cunningham, B.T., 2013. Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence, Sensors, vol. 13, pp. 5561-5584.
  • 16. Johnson, S. G., Fan, S. H., Villeneuve, P. R., Joannopoulos, J. D., Kolodziejski, L. A., 1999. Guided Modes in Photonic Crystal Slabs, Phys. Rev. B., vol. 60. no. 8, 5751–5758.
  • 17. Fan, S., Joannopoulos, J. D., 2002. Analysis of Guided Resonances in Photonic Crystal Slabs, Phys. Rev. B., vol. 65 no. 23, pp. 235112(1)-235112(8).
  • 18. Mortensen, N. A., Xiao, S. S., Pedersen, J., 2008. Liquid-infiltrated Photonic Crystals: Enhanced Light-Matter Interactions for Lab-on-a-chip Applications, Microfluid. Nanofluid., vol. 4, no. 1-2, pp. 117–127.
  • 19. Qiu, P., Wang, G., Lu, J., Wang, H., 2012. Local Density of States in Photonic Crystal Cavity, Front. Optoelectron., vol. 5, no. 3, pp. 341-344.
  • 20. http://ab-initio.mit.edu/MEEP/Tutorial,
  • 21. Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., Johnson, S. G., 2010. MEEP: A Flexible, Free-software Package for Electromagnetic Simulations by the FDTD Method, Comput. Phys. Commun., vol. 181, pp. 687–702.
  • 22. Joannopulous, J. D., Meade, R. D., Winn, J. N., 1995. Photonic Crystals: Molding the Flow of Light, University Press, Princeton.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Utku Erdiven Bu kişi benim

Faruk Karadağ Bu kişi benim

Yayımlanma Tarihi 15 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 32 Sayı: 1

Kaynak Göster

APA Erdiven, U., & Karadağ, F. (2017). Fotonik Kristal Levhalı Biyosensörler ve Uygulamaları. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(1), 133-140. https://doi.org/10.21605/cukurovaummfd.310070
AMA Erdiven U, Karadağ F. Fotonik Kristal Levhalı Biyosensörler ve Uygulamaları. cukurovaummfd. Mart 2017;32(1):133-140. doi:10.21605/cukurovaummfd.310070
Chicago Erdiven, Utku, ve Faruk Karadağ. “Fotonik Kristal Levhalı Biyosensörler Ve Uygulamaları”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32, sy. 1 (Mart 2017): 133-40. https://doi.org/10.21605/cukurovaummfd.310070.
EndNote Erdiven U, Karadağ F (01 Mart 2017) Fotonik Kristal Levhalı Biyosensörler ve Uygulamaları. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32 1 133–140.
IEEE U. Erdiven ve F. Karadağ, “Fotonik Kristal Levhalı Biyosensörler ve Uygulamaları”, cukurovaummfd, c. 32, sy. 1, ss. 133–140, 2017, doi: 10.21605/cukurovaummfd.310070.
ISNAD Erdiven, Utku - Karadağ, Faruk. “Fotonik Kristal Levhalı Biyosensörler Ve Uygulamaları”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32/1 (Mart 2017), 133-140. https://doi.org/10.21605/cukurovaummfd.310070.
JAMA Erdiven U, Karadağ F. Fotonik Kristal Levhalı Biyosensörler ve Uygulamaları. cukurovaummfd. 2017;32:133–140.
MLA Erdiven, Utku ve Faruk Karadağ. “Fotonik Kristal Levhalı Biyosensörler Ve Uygulamaları”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 32, sy. 1, 2017, ss. 133-40, doi:10.21605/cukurovaummfd.310070.
Vancouver Erdiven U, Karadağ F. Fotonik Kristal Levhalı Biyosensörler ve Uygulamaları. cukurovaummfd. 2017;32(1):133-40.