Research Article
BibTex RIS Cite

Thermo-mechanical Analysis of Jute, E-glass and Carbon Fabrics

Year 2017, Volume: 32 Issue: 2, 183 - 194, 15.06.2017
https://doi.org/10.21605/cukurovaummfd.358423

Abstract

Textile materials are one of the most favored reinforcement materials in the composite industry. In this
study, thermo-mechanical properties of six various fabrics which are woven with three different yarns
(jute, E-glass and carbon) are investigated by dynamic mechanical analysis (DMA), differential scanning
calorimetry (DSC) and thermogravimetric analysis (TGA) methods. According to DMA results, moduli
of E-glass and carbon samples decrease with increasing temperature while it increases at jute samples.
DSC graphs showed that there is not any phase change between 25°C - 200°C at any of the samples.
Considering the TGA results, it is realized that while jute fabrics have two sharp weight losses at about
255°C and 340°C, carbon fabrics have a weight loss at about 530°C.

References

  • 1. Pihtili, H., Tosun, N., 2002. Effect of Load and Speed on the Wear Behaviour of Woven Glass Fabrics and Aramid fibre-reinforced Composites, Wear, 252: 979–984.
  • 2. Sapuan, SM., Maleque, MA., 2005. Design and Fabrication of Natural Woven Fabric Reinforced Epoxy Composite for Household Telephone Stand. Materials & Design, 26: 65–71.
  • 3. Ding, YQ., Yan, Y., McIlhagger, R., Brown, D., 1995. Comparison of the Fatigue Behaviour of 2-D and 3-D Woven Fabric Reinforced Composites. Journal of Materials Processing Technology, 55: 171-177.
  • 4. Khan, JA., Khan, MA., Islam, R., Gafur, A., 2010. Mechanical, Thermal and Interfacial Properties of Jute Fabric-reinforced Polypropylene Composites: Effect of Potassium Dichromate. Materials Sciences and Applications, 1: 350-357.
  • 5. Gowda, TM., Naidu, ACB., Chhaya, R., 1999. Some Mechanical Properties of Untreated Jute Fabric-reinforced Polyester Composites, Composites Part A, 30: 277–284.
  • 6. Bhagat, VK., Biswas, S., Dehury, J., 2014. Physical, Mechanical and Water Absorption Behavior of Coir/glass Fiber Reinforced Epoxy Based Hybrid Composites. Polymer Composites, 35(5): 925-930.
  • 7. Hassan, MM., Islam, MR., Shehrzade, S., Khan, MA., 2003. Influence of Mercerization Along with Ultraviolet (uv) and Gamma Radiation on Physical and Mechanical Properties of Jute Yarn by Grafting With 3- (trimethoxysilyl) Propylmethacrylate (silane) and Acrylamide Under Uv Radiation. PolymerPlastics Technology and Engineering, 42: 515-531.
  • 8. Ahmed, KS., Vijayarangan, S., Naidu, ACB., 2007. Elastic Properties, Notched Strength and Fracture Criterion in Untreated Woven Jute– glass Fabric Reinforced Polyester Hybrid Composites. Materials & Design, 28: 2287–2294.
  • 9. Sreekala, MS., George, J., Kumaran, MG., Thomas, S., 2002. The Mechanical Performance of Hybrid Phenol-formaldehydebased Composites Reinforced with Glass and Oil Palm Fibres. Composites Science and Technology, 62: 339–353.
  • 10. Sanjay, MR., Arpitha, GR., Yogesha, B., 2015. Study on Mechanical Properties of NaturalGlass Fibre Reinforced Polymer Hybrid Composites: a Review, Materials Today: Proceedings, 2: 2959 – 2967.
  • 11. Dong, C., Davies, IJ., 2012. Optimal Design for the Flexural Behaviour of Glass and Carbon Fibre Reinforced Polymer Hybrid Composites, Materials & Design, 37: 450–457.
  • 12.Bijwe, J., Rattan, R., Fahim, M., 2007. Abrasive Wear Performance of Carbon Fabric Reinforced Polyetherimide Composites: Influence of Content and Orientation of Fabric. Tribology International, 40: 844–854.
  • 13. Pillay, S., Vaidya, UK., Janowski, GM., 2009. Effects of Moisture and UV Exposure on Liquid Molded Carbon Fabric Reinforced Nylon 6 Composite Laminates. Composites Science and Technology, 69: 839–846.
  • 14.Rattan, R., Bijwe, J., 2007. Influence of Impingement Angle on Solid Particle Erosion of Carbon Fabric Reinforced Polyetherimide Composite. Wear, 262: 568–574.
  • 15. Zhang, ZZ., Su, FH., Wang, K., Jiang, W., Men, X., Liu, W., 2005. Study on the Friction and Wear Properties of Carbon Fabric Composites Reinforced with Micro- and Nanoparticles. Materials Science and Engineering A, 404: 251–258.
  • 16. Zhang, J., Chaisombat, K., He, S., Wang, CH., 2012. Hybrid Composite Laminates Reinforced with Glass/carbon Woven Fabrics for Lightweight Load Bearing Structures, Materials & Design, 36: 75–80.
  • 17. Pandita, SD., Yuan, X., Manan, MA., Lau, CH., Subramanian, AS., Wei, J., 2014. Evaluation of Jute/glass Hybrid Composite Sandwich: Water Resistance, Impact Properties and Life Cycle Assessment. Journal of Reinforced Plastics and Composites, 33(1): 14-25.
  • 18. De Rosa, IM., Santulli, C., Sarasini, F., Valente, M., 2009. Post-impact Damage Characterization of Hybrid Configurations of Jute/glass Polyester Laminates using Acoustic Emission and IR Thermography, Composites Science and Technology, 69: 1142–1150.
  • 19. Goertzen, WK., Kessler, MR., 2007. Dynamic Mechanical Analysis of Carbon/epoxy Composites for Structural Pipeline Repair, Composites Part B, 38: 1–9.
  • 20. Pothan, LA., Oommen, Z., Thomas, S., 2003. Dynamic Mechanical Analysis of Banana Fiber Reinforced Polyester Composites. Composites Science and Technology, 63: 283–293.
  • 21. Saha, AK., Das, S., Bhatta, D., Mitra, BC., 1999. Study of Jute Fiber Reinforced Polyester Composites by Dynamic Mechanical Analysis. Journal of Applied Polymer Science, 71: 1505–1513.
  • 22. Tejyan, S., Patnaik, A., Singh, T., 2013. Effect of Fibre Weight Percentage on ThermoMechanical Properties of Needlepunched Nonwoven Reinforced Polymer Composites. International Journal of Research in Mechanical Engineering and Technology, 3(2): 41-44.
  • 23.Joseph, PV., Joseph, K., Thomas, S., Pillai, CKS., Prasad, VS., Groeninckx, G., Sarkissova, M., 2003. The Thermal and Crystallisation Studies of Short Sisal Fibre Reinforced Polypropylene Composites. Composites Part A, 34: 253–266.
  • 24. Me, Z., Chung, DDL., 2000. Glass Transition and Melting Behavior of Carbon Fiber Reinforced Thermoplastic Composite, Studied by Electrical Resistance Measurement. Polymer Composites, 21(5): 711-715.
  • 25. Zhu, P., Sui, S., Wang, B., Sun, K., Sun, G., 2004. A Study of Pyrolysis and Pyrolysis Products of Flame-retardant Cotton Fabrics by DSC, TGA, and PY–GC–MS. Journal of Analytical and Applied Pyrolysis, 71: 645–655.
  • 26.Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, JM., Ham-Pichavant, F., Cansell, F., Aymonier, C., 2011. Thermogravimetric Analysis as a New Method to Determine the Lignocellulosic Composition of Biomass. Biomass and Bioenergy, 35: 298-307.
  • 27.Baley, C., 2002. Analysis of the Flax Fibres Tensile Behaviour and Analysis of the Tensile Stiffness Increase. Composites Part A, 33: 939–948.
  • 28. Owuor, P., Tcherbi-Narteh, A., Hosur, M., Jeelani, S., 2014. Durability Studies of Hybrid Composite of E-glass/carbon Fibers in Different Solvents for Bridge Deck Panel Application, ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Quebec, Canada.
  • 29. Ghosh, P., Bose, NR., Mitra, BC., Das, S., 1997. Dynamic Mechanical Analysis of FRP Composites Based on Different Fiber Reinforcements and Epoxy Resin as the Matrix Material, Journal of Applied Polymer Science, 62: 2467-2472.
  • 30. Niedermann, P., Szebenyi, G., Toldy, A., 2015. Characterization of High Glass Transition Temperature Sugar-based Epoxy Resin Composites with Jute and Carbon Fibre Reinforcement, Composites Science and Technology, 117: 62-68.
  • 31. Nair, KCM., Thomas, S., Groeninck, G., 2001. Thermal and Dynamic Mechanical Analysis of Polystyrene Composites Reinforced with Short Sisal Fibres. Composites Science and Technology, 61: 2519–2529.
  • 32.Raghavendra, G., Kumar, KA., Kumar, MH, Raghukumar, B., Ojha, S., 2015. Moisture Absorption Behavior and its Effect on the Mechanical Properties of Jute-reinforced Epoxy Composite. Polymer Composites, doi: 10.1002/pc.
  • 33. Lv, G., Wu, S., Lou, R., 2010. Kinetic Study of the Thermal Decomposition of Hemicellulose Isolated from Corn Stalk. Bioresources, 5(2): 1281-1291.
  • 34. Yang, H., Yan, R., Chen, H., Lee, DH., Zheng, C., 2007. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel, 86: 1781–1788.

Jüt, E-cam ve Karbon Kumaşların Termo-mekanik Analizi

Year 2017, Volume: 32 Issue: 2, 183 - 194, 15.06.2017
https://doi.org/10.21605/cukurovaummfd.358423

Abstract

Tekstil malzemeleri, kompozit sektöründe en çok tercih edilen takviye malzemelerinden biridir. Bu
çalışmada, üç farklı lifle dokunmuş (jüt, karbon ve E-cam) altı farklı kumaşın termo-mekanik özellikleri
dinamik mekanik analiz (DMA), diferansiyel taramalı kalorimetre (DSC) ve termogravimetrik analiz
(TGA) metodlarıyla incelenmiştir. DMA sonuçlarına göre E-cam ve karbon kumaşların modülleri artan
sıcaklıkla birlikte azalırken, jüt kumaşların modüllerinde artış görülmüştür. DSC grafikleri ise 25°C -
200°C arasında numunelerde bir faz değişimi olmadığını göstermiştir. TGA sonuçları göz önünde
bulundurulduğunda ise, jüt kumaşlarda 255°C ve 340°C civarlarında ani ağırlık kayıpları olduğu
görülürken, karbon kumaşlarda 530°C civarında ağırlık kaybı olduğu tespit edilmiştir. 

References

  • 1. Pihtili, H., Tosun, N., 2002. Effect of Load and Speed on the Wear Behaviour of Woven Glass Fabrics and Aramid fibre-reinforced Composites, Wear, 252: 979–984.
  • 2. Sapuan, SM., Maleque, MA., 2005. Design and Fabrication of Natural Woven Fabric Reinforced Epoxy Composite for Household Telephone Stand. Materials & Design, 26: 65–71.
  • 3. Ding, YQ., Yan, Y., McIlhagger, R., Brown, D., 1995. Comparison of the Fatigue Behaviour of 2-D and 3-D Woven Fabric Reinforced Composites. Journal of Materials Processing Technology, 55: 171-177.
  • 4. Khan, JA., Khan, MA., Islam, R., Gafur, A., 2010. Mechanical, Thermal and Interfacial Properties of Jute Fabric-reinforced Polypropylene Composites: Effect of Potassium Dichromate. Materials Sciences and Applications, 1: 350-357.
  • 5. Gowda, TM., Naidu, ACB., Chhaya, R., 1999. Some Mechanical Properties of Untreated Jute Fabric-reinforced Polyester Composites, Composites Part A, 30: 277–284.
  • 6. Bhagat, VK., Biswas, S., Dehury, J., 2014. Physical, Mechanical and Water Absorption Behavior of Coir/glass Fiber Reinforced Epoxy Based Hybrid Composites. Polymer Composites, 35(5): 925-930.
  • 7. Hassan, MM., Islam, MR., Shehrzade, S., Khan, MA., 2003. Influence of Mercerization Along with Ultraviolet (uv) and Gamma Radiation on Physical and Mechanical Properties of Jute Yarn by Grafting With 3- (trimethoxysilyl) Propylmethacrylate (silane) and Acrylamide Under Uv Radiation. PolymerPlastics Technology and Engineering, 42: 515-531.
  • 8. Ahmed, KS., Vijayarangan, S., Naidu, ACB., 2007. Elastic Properties, Notched Strength and Fracture Criterion in Untreated Woven Jute– glass Fabric Reinforced Polyester Hybrid Composites. Materials & Design, 28: 2287–2294.
  • 9. Sreekala, MS., George, J., Kumaran, MG., Thomas, S., 2002. The Mechanical Performance of Hybrid Phenol-formaldehydebased Composites Reinforced with Glass and Oil Palm Fibres. Composites Science and Technology, 62: 339–353.
  • 10. Sanjay, MR., Arpitha, GR., Yogesha, B., 2015. Study on Mechanical Properties of NaturalGlass Fibre Reinforced Polymer Hybrid Composites: a Review, Materials Today: Proceedings, 2: 2959 – 2967.
  • 11. Dong, C., Davies, IJ., 2012. Optimal Design for the Flexural Behaviour of Glass and Carbon Fibre Reinforced Polymer Hybrid Composites, Materials & Design, 37: 450–457.
  • 12.Bijwe, J., Rattan, R., Fahim, M., 2007. Abrasive Wear Performance of Carbon Fabric Reinforced Polyetherimide Composites: Influence of Content and Orientation of Fabric. Tribology International, 40: 844–854.
  • 13. Pillay, S., Vaidya, UK., Janowski, GM., 2009. Effects of Moisture and UV Exposure on Liquid Molded Carbon Fabric Reinforced Nylon 6 Composite Laminates. Composites Science and Technology, 69: 839–846.
  • 14.Rattan, R., Bijwe, J., 2007. Influence of Impingement Angle on Solid Particle Erosion of Carbon Fabric Reinforced Polyetherimide Composite. Wear, 262: 568–574.
  • 15. Zhang, ZZ., Su, FH., Wang, K., Jiang, W., Men, X., Liu, W., 2005. Study on the Friction and Wear Properties of Carbon Fabric Composites Reinforced with Micro- and Nanoparticles. Materials Science and Engineering A, 404: 251–258.
  • 16. Zhang, J., Chaisombat, K., He, S., Wang, CH., 2012. Hybrid Composite Laminates Reinforced with Glass/carbon Woven Fabrics for Lightweight Load Bearing Structures, Materials & Design, 36: 75–80.
  • 17. Pandita, SD., Yuan, X., Manan, MA., Lau, CH., Subramanian, AS., Wei, J., 2014. Evaluation of Jute/glass Hybrid Composite Sandwich: Water Resistance, Impact Properties and Life Cycle Assessment. Journal of Reinforced Plastics and Composites, 33(1): 14-25.
  • 18. De Rosa, IM., Santulli, C., Sarasini, F., Valente, M., 2009. Post-impact Damage Characterization of Hybrid Configurations of Jute/glass Polyester Laminates using Acoustic Emission and IR Thermography, Composites Science and Technology, 69: 1142–1150.
  • 19. Goertzen, WK., Kessler, MR., 2007. Dynamic Mechanical Analysis of Carbon/epoxy Composites for Structural Pipeline Repair, Composites Part B, 38: 1–9.
  • 20. Pothan, LA., Oommen, Z., Thomas, S., 2003. Dynamic Mechanical Analysis of Banana Fiber Reinforced Polyester Composites. Composites Science and Technology, 63: 283–293.
  • 21. Saha, AK., Das, S., Bhatta, D., Mitra, BC., 1999. Study of Jute Fiber Reinforced Polyester Composites by Dynamic Mechanical Analysis. Journal of Applied Polymer Science, 71: 1505–1513.
  • 22. Tejyan, S., Patnaik, A., Singh, T., 2013. Effect of Fibre Weight Percentage on ThermoMechanical Properties of Needlepunched Nonwoven Reinforced Polymer Composites. International Journal of Research in Mechanical Engineering and Technology, 3(2): 41-44.
  • 23.Joseph, PV., Joseph, K., Thomas, S., Pillai, CKS., Prasad, VS., Groeninckx, G., Sarkissova, M., 2003. The Thermal and Crystallisation Studies of Short Sisal Fibre Reinforced Polypropylene Composites. Composites Part A, 34: 253–266.
  • 24. Me, Z., Chung, DDL., 2000. Glass Transition and Melting Behavior of Carbon Fiber Reinforced Thermoplastic Composite, Studied by Electrical Resistance Measurement. Polymer Composites, 21(5): 711-715.
  • 25. Zhu, P., Sui, S., Wang, B., Sun, K., Sun, G., 2004. A Study of Pyrolysis and Pyrolysis Products of Flame-retardant Cotton Fabrics by DSC, TGA, and PY–GC–MS. Journal of Analytical and Applied Pyrolysis, 71: 645–655.
  • 26.Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, JM., Ham-Pichavant, F., Cansell, F., Aymonier, C., 2011. Thermogravimetric Analysis as a New Method to Determine the Lignocellulosic Composition of Biomass. Biomass and Bioenergy, 35: 298-307.
  • 27.Baley, C., 2002. Analysis of the Flax Fibres Tensile Behaviour and Analysis of the Tensile Stiffness Increase. Composites Part A, 33: 939–948.
  • 28. Owuor, P., Tcherbi-Narteh, A., Hosur, M., Jeelani, S., 2014. Durability Studies of Hybrid Composite of E-glass/carbon Fibers in Different Solvents for Bridge Deck Panel Application, ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Quebec, Canada.
  • 29. Ghosh, P., Bose, NR., Mitra, BC., Das, S., 1997. Dynamic Mechanical Analysis of FRP Composites Based on Different Fiber Reinforcements and Epoxy Resin as the Matrix Material, Journal of Applied Polymer Science, 62: 2467-2472.
  • 30. Niedermann, P., Szebenyi, G., Toldy, A., 2015. Characterization of High Glass Transition Temperature Sugar-based Epoxy Resin Composites with Jute and Carbon Fibre Reinforcement, Composites Science and Technology, 117: 62-68.
  • 31. Nair, KCM., Thomas, S., Groeninck, G., 2001. Thermal and Dynamic Mechanical Analysis of Polystyrene Composites Reinforced with Short Sisal Fibres. Composites Science and Technology, 61: 2519–2529.
  • 32.Raghavendra, G., Kumar, KA., Kumar, MH, Raghukumar, B., Ojha, S., 2015. Moisture Absorption Behavior and its Effect on the Mechanical Properties of Jute-reinforced Epoxy Composite. Polymer Composites, doi: 10.1002/pc.
  • 33. Lv, G., Wu, S., Lou, R., 2010. Kinetic Study of the Thermal Decomposition of Hemicellulose Isolated from Corn Stalk. Bioresources, 5(2): 1281-1291.
  • 34. Yang, H., Yan, R., Chen, H., Lee, DH., Zheng, C., 2007. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel, 86: 1781–1788.
There are 34 citations in total.

Details

Journal Section Articles
Authors

Hande Sezgin This is me

Ömer Berk Berkalp This is me

Rajesh Mıshra This is me

Jiri Mılıtky This is me

Publication Date June 15, 2017
Published in Issue Year 2017 Volume: 32 Issue: 2

Cite

APA Sezgin, H., Berkalp, Ö. B., Mıshra, R., Mılıtky, J. (2017). Jüt, E-cam ve Karbon Kumaşların Termo-mekanik Analizi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(2), 183-194. https://doi.org/10.21605/cukurovaummfd.358423
AMA Sezgin H, Berkalp ÖB, Mıshra R, Mılıtky J. Jüt, E-cam ve Karbon Kumaşların Termo-mekanik Analizi. cukurovaummfd. June 2017;32(2):183-194. doi:10.21605/cukurovaummfd.358423
Chicago Sezgin, Hande, Ömer Berk Berkalp, Rajesh Mıshra, and Jiri Mılıtky. “Jüt, E-Cam Ve Karbon Kumaşların Termo-Mekanik Analizi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32, no. 2 (June 2017): 183-94. https://doi.org/10.21605/cukurovaummfd.358423.
EndNote Sezgin H, Berkalp ÖB, Mıshra R, Mılıtky J (June 1, 2017) Jüt, E-cam ve Karbon Kumaşların Termo-mekanik Analizi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32 2 183–194.
IEEE H. Sezgin, Ö. B. Berkalp, R. Mıshra, and J. Mılıtky, “Jüt, E-cam ve Karbon Kumaşların Termo-mekanik Analizi”, cukurovaummfd, vol. 32, no. 2, pp. 183–194, 2017, doi: 10.21605/cukurovaummfd.358423.
ISNAD Sezgin, Hande et al. “Jüt, E-Cam Ve Karbon Kumaşların Termo-Mekanik Analizi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32/2 (June 2017), 183-194. https://doi.org/10.21605/cukurovaummfd.358423.
JAMA Sezgin H, Berkalp ÖB, Mıshra R, Mılıtky J. Jüt, E-cam ve Karbon Kumaşların Termo-mekanik Analizi. cukurovaummfd. 2017;32:183–194.
MLA Sezgin, Hande et al. “Jüt, E-Cam Ve Karbon Kumaşların Termo-Mekanik Analizi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 32, no. 2, 2017, pp. 183-94, doi:10.21605/cukurovaummfd.358423.
Vancouver Sezgin H, Berkalp ÖB, Mıshra R, Mılıtky J. Jüt, E-cam ve Karbon Kumaşların Termo-mekanik Analizi. cukurovaummfd. 2017;32(2):183-94.