Research Article
BibTex RIS Cite

Ni50Mn36Sn14 Heusler Alaşımının Yumuşak Manyetik Karakteri

Year 2018, Volume: 33 Issue: 2, 139 - 152, 30.06.2018
https://doi.org/10.21605/cukurovaummfd.509100

Abstract

Bu çalışmada, Mn2 ve Sn1 bileşenleri antiferromanyetik etkileşimli Ni50Mn36Sn14 Heusler alaşımının (NiMnSn-HA) manyetik özellikleri, etkin alan teorisinde Kaneyoshi yaklaşımı kullanılarak araştırılmıştır. NiMnSn-HA ve bileşenleri, TC'de ikinci derece faz geçişi, Mn2 bileşeni ayrıca Tt'de zayıf bir birinci derece faz geçişi and dalgalı bir histerezis davranışı sergiler. Tt'nin altında, NiMnSn-HA ve bileşenleri, yüksek zorlayıcılığa bağlı sert bir manyetik karakteristik gösterirken sıcaklık TC'ye yaklaştıkça yumuşak manyetiktirler. Bu davranışların, Mn2 ve Sn1 bileşenlerinin antiferromanyetik etkileşiminden kaynaklandığı söylenebilir. 

References

  • 1. Kittel, C., 2005. Introduction to Solid State Physics (Eight Edition), John Wiley & Sons, New York, 352.
  • 2. Wei, R., Sun, H., Chen, C., Tao, J., Li, F., 2018. Formation of Soft Magnetic High Entropy Amorphous Alloys Composites Containing in Situ Solid Solution Phase, J. Magn. Magn. Mater. 449, 63-67.
  • 3. Becker, T.I., Zimmermann, K., Borin, D.Yu., Stepanov, G.V., Storozhenko, P.A. 2018. Dynamic Response of a Sensor Element Made of Magnetic Hybrid Elastomer with Controllable Properties. J. Magn. Magn. Mater. 449, 77-82.
  • 4. Fan, L.F., Hsiang, H.I., Hung, J.J., 2018. Silane Surface Modification Effects on the Electromagnetic Properties of Phosphatized Iron-based SMCs. Applied Surface Science. 433, 133-138.
  • 5. Alnasir, M. H., Awan, M.S., Manzoor, S., 2018. Magnetic and Magnetothermal Studies of Pure and Doped Gadolinium Silicide Nanoparticles for Self-controlled Hyperthermia Applications. J. Magn. Magn. Mater., 449, 137-144.
  • 6. Hsiang, H.I., Fan, L.F., Hung, J.J., 2018. Phosphoric Acid Addition Effect on the Microstructure and Magnetic Properties of Iron-based Soft Magnetic Composites, J. Magn. Magn. Mater., 447, 1-8.
  • 7. Jo Sunday, K., Taheri, M.L., 2017. Soft Magnetic Composites: Recent Advancements in the Technology, Metal Powder Report, 72(6) 425-429.
  • 8. Lauda, M., Füzer, J., Kollár, P., Strečková, M., Bureš, R., Kováč, J., Baťková, M., Baťko, I., 2018. Magnetic Properties and Loss Separation in FeSi/MnZnFe2O4 Soft Magnetic Composites, J. Magn. Magn. Mater., 411, 12-17.
  • 9. Feng, S.J., Ni, J.L., Zhou, X.H., Wu, X.S., Huang, S.G., Liu, X.S., 2018. Expansion of Initial Magnetization Region in BaTi1.2Co1.2Fe9O19-δ at Low Temperature. J. Magn. Magn. Mater., 447, 21-25.
  • 10. Shen, J., Dai, Q., Ren, S., 2018. Phase Transformation Controlled Tetragonality of MnNi-based Nanocrystals, Nanotechnology, 27, 10LT01.
  • 11. Fathi, R., Sanjabi, S., Bayat N., 2012. Synthesis and Characterization of NiMn Alloy Nanowires Via Electrodeposition in AAO Template, Materials Letters, 66, 346–348.
  • 12. Li, C-M., Hu, Q-M., Yang, R., Johansson, B., Vitos, L., 2015. Theoretical Investigation of the Magnetic and Structural Transitions of Ni-CoMn-Sn Metamagnetic Shape-memory Alloys, Phys. Rev. B, 92, 024105.
  • 13. Ignatiev, V.R., Lebedev, N.G., Orlov, A.A., 2018. Quantum Model of a Hysteresis in a Single-domain Magnetically Soft Ferromagnetic. J. Magn. Magn. Mater., 446, 135–142.
  • 14. Conti S., Lenz, M. Rumpf, M. 2016. Hysteresis in Magnetic Shape Memory Composites: Modeling and Simulation, Journal of the Mechanics and Physics of Solids 89, 272-286.
  • 15. Kantar, E., 2017. Composition, Temperature and Geometric Dependent Hysteresis Behaviours in Ising-type Segmented Nanowire with Magnetic and Diluted Magnetic, and its Soft/hard Magnetic Characteristics, Philosophical Magazine, 97(6), 431-450.
  • 16. Popa, F. , Chicinas, H.F., Marinca, T.F., Chicinas, I., 2017. Influence of Mechanical Alloying and Heat Treatment Processing on the Ni2MnSn Heusler Alloy Structure, Journal of Alloys and Compounds, 716, 137-143.
  • 17. Aydogdu, Y., Turabi, A.S., Aydogdu, A., Kok, M., Yakinci, Z.D., Karaca, H.E., 2016. The Effects of Boron Addition on the Magnetic and Mechanical Properties of NiMnSn Shape Memory Alloys, Journal of Thermal Analysis and Calorimetry, 126(2), 399-406.
  • 18. Aydogdu, Y., Turabi, A.S., Kok, M., Aydogdu, A., Yakinci, Z.D., Aksan, M.A., Yakinci, M.E., Karaca, H.E., 2016. The Effect of Sn Content on Mechanical, Magnetization and Shape Memory Behavior in NiMnSn, J. Nanoalloys and Compounds, 683, 339-345.
  • 19. Hernando, B., Sanchez Llamazares, J.L., Santos, J.D., Sanchez, M.L., Escoda, Ll., Sunol, J.J., Varga, N., Garcia, C., Gonzalez, J., 2009. Grain Oriented NiMnSn and NiMnIn Heusler Alloys Ribbons Produced by Melt Spinning: Martensitic Transformation and Magnetic Properties, J. Magn. Magn. Mater., 321, 763-768.
  • 20. Lin, C., Yan, H., Zhang, Y., Esling, C., Zhao, X., Zuo, L., 2016. Crystal Structure of Modulated Martensite and Crystallographic Correlations Between Martensite Variants of Ni50Mn38Sn12 Alloy, Journal of Applied Crystallography 49(4), 1276-1283.
  • 21. Chernenko, V.A., Barandiaran, J.M., L’vov, V.A., Gutierrez, J., Lazpita, P., Orue, I., 2013. Temperature Dependent Magnetostrains in Polycrystalline Magnetic Shape Memory Heusler Alloys, Journal of Alloys and Compounds, 577S, S305-S308.
  • 22. Guiza-Arguello, V.R., Monroe, J.A., Karaman, I., Hahn, M.S., 2010. Cytocompatibility Evaluation of NiMnSn Meta-magnetic Shape Memory Alloys for Biomedical Applications, Journal of Biomedical Materials Research-Part B Applied Biomaterials, 104(5), 853-863.
  • 23. Kainuma, R., Ito, K., Ito, W., Umetsu, R.Y., Kanomata, T., Ishida, K., 2010. NiMn-based Metamagnetic Shape Memory Alloys, Materials Science Forum, 635, 23-31.
  • 24. Wang, R.L., Yan, J.B., Marchenkov, V.V., Chen, S.S., Tang, S.L., Yang C.P., 2011. Effect of Al Doping on the Martensitic Transition and Magnetic Entropy Change in Ni-Mn-Sn Alloys, Solid State Commun., 151, 1196-1199.
  • 25. de Groot, R.A., Van Engen, P.G., Van Engelen, P.P.T., Buschow, K.H.J., 1990. Magnetic and Magneto-optical Properties of NiMnSb1-xSnx Compounds in Relation to Their Electronic Band Structure, J. Magn. Magn. Mater., 86, 326-332.
  • 26. Huang, L., Cong, D.Y., Suo, H.L., Wang, Y.D., 2014. Giant Magnetic Refrigeration Capacity Near Room Temperature in Ni40Co10Mn40Sn10 Multifunctional Alloy, App. Phys. Lett., 104, 132407.
  • 27. Passamani, E.C., Cordova, C., Alves, A.L., Moscon, P.S., Larica, C., Takeuchi, A.Y., Biondo, A., 2009. Magnetic studies of FeDoped Martensitic Ni2Mn1.44Sn0.56 Heusler alloy, J. Phys. D: Appl. Phys., 42, 215006.
  • 28. Llamazares, J.L.S., Zuniga, H.F., Jara, D.R., Valdes, C.F.S., Fernandez, T.G., Ross, C.A., Garcia, C., 2013. Structural and Magnetic Characterization of the İntermartensitic Phase Transition in NiMnSn Heusler Alloy Ribbons, J. App. Phys., 113, 17A948.
  • 29. Raji, G.R., Uthaman, B., Rajan, R.K., Sharannia, M.P., Thomas, S., Suresh, K.G., Varma M.R., 2016. Martensitic Transition, Spin Glass Behavior and Exchange Bias in Si Substituted Ni50Mn36Sn14 Heusler Alloys, RSC Advances, 6, 32037-32045.
  • 30. Grünebohm, A., Herper, H.C., Entel, P., 2016. On the Rich Magnetic Phase Diagram of (Ni, Co)-Mn-Sn Heusler Alloys, Journal of Physics D: Applied Physics, 49(39), 395001.
  • 31. Wang, X., Shang, J., Wang, F., Jiang, C., Xu, H., 2014. Origin of Unusual Properties in the Ferromagnetic Heusler Alloy Ni–Mn–Sn: A First-principles İnvestigation, Scripta Materialia, 89, 33-36.
  • 32. Siewert, M., Gruner, M.E., Hucht, A., Herper, H.C., Dannenberg, A., Chakrabarti, A., Singh, N., Arroyave, R., Entel, P., 2012. A FirstPrinsiples Investigation of the Compositional Dependent Properties of Magnetic Shape Memory Heusler Alloys, Advanced Engineering Mater., 63, 1-17.
  • 33. Xiao, H.B., Yang, C.P., Wang, R.L., Marchenkov, V.V., Luo, X., 2014. Martensitic Transformation and Phase Stability of In-doped Ni-Mn-Sn Shape Memory Alloys from FirstPrinciples Calculations, J. App. Phys., 115, 203703.
  • 34. Grünebohm, A., Comtesse, D., Hucht, A., Gruner, M.E., Maslovskaya, A., Entel, P., 2014. Optimizing the Magnetocaloric Effect in Ni-Mn-Sn by Substitution: a First-principles Study, IEEE Transactions on Magnetics, 50 (11), 2506004.
  • 35. Duran, A., 2018. Lattice Location Effect of Ni50Mn36Sn14 Heusler Alloy, J. Supercond Nov Magn., 31 (4), 1101-1109.
  • 36. Duran, A., 2018. Lattice Location Effect of Ni50Mn36Sn14 Heusler Alloy, J. Supercond Nov Magn., doi: 10.1007/s10948-018-4686-8 (first online)
  • 37. Kaneyoshi, T., 2009. Magnetizations of a Nanoparticle Described by the Transverse Ising Model, J. Magn. Magn. Mater., 321, 34303435.
  • 38. Kaneyoshi, T., 2010. Phase Diagrams of a Transverse Ising Nanowire, J. Magn. Magn. Mater., 322, 3014-3018.
  • 39. Kaneyoshi, T., 2012. The Possibility of a Compensation Point İnduced by a Transverse Field in Transverse Ising Nanoparticles With a Negative Core–shell Coupling, Solid State Commun., 152, 883-886.
  • 40. Kaneyoshi, T., 2009. Ferrimagnetic Magnetizations of Transverse Ising Thin Films With Diluted Surfaces, J. Magn. Magn. Mater., 321, 3630-3636.
  • 41. Keskin, M., Şarlı, N., 2017. Magnetic Properties of the Binary Nickel/Bismuth Alloy, J. Magn. Magn. Mater., 437, 1-6.
  • 42. Wang, C.D., Ma, R.G., 2013. Force İnduced Phase Transition of Honeycomb-structured Ferroelectric Thin Film, Physica A, 392, 35703577.
  • 43. Şarlı, N., 2016. Generation of an External Magnetic Field With the Spin Orientation Effect in a Single Layer Ising Nanographene, Physica E, 83, 22-29.
  • 44. Şarlı, N., Akbudak, S., Ellialtıoğlu, M.R., 2014. The Peak Effect (PE) Region of the Antiferromagnetic Two Layer Ising Nanographene, Physica B, 452, 18-22.
  • 45. Şarlı, N., Akbudak, S., Polat, Y., Ellialtıoğlu, M.R., 2015. Effective Distance of a Ferromagnetic Trilayer Ising Nanostructure With an ABA Stacking Sequence, Physica A, 434, 194-200.
  • 46. Şarlı, N., 2016. Artificial Magnetism in a Carbon Diamond Nanolattice With the Spin Orientation Effect, Diamond & Related Materials, 64, 103-109.
  • 47. Kantar, E., Keskin, M., 2014. Thermal and Magnetic Properties of Ternary Mixed Ising Nanoparticles With Core–shell Structure: Effective-field Theory Approach, J. Magn. Magn. Mater., 349, 165-172.
  • 48. Jiang, W., Li, X.-X., Liu, L.-M., Chen, J.-N., Zhang, F., 2014. Hysteresis Loop of a Cubic Nanowire in the Presence of the Crystal Field and the Transverse Field. J. Magn. Magn. Mater. 353, 90-98.
  • 49. Şarlı, N., 2015. Paramagnetic Atom Number and Paramagnetic Critical Pressure of the sc, bcc and fcc Nanolattices, J. Magn. Magn. Mater., 374, 238-244.
  • 50. Ertaş, M., Kocakaplan, Y., 2014. Dynamic Behaviors of the Hexagonal Ising Nanowire, Phys. Lett. A, 378, 845-850.
  • 51. Zaim, A., Kerouad, M., Boughrara, M., 2013. Effects of the Random Field on the Magnetic Behavior of Nanowires With Core/shell Morphology, J. Magn. Magn. Mater., 331, 3744.
  • 52. Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Ahuja, R., Dujardin, F., 2013. Phase Diagrams of Diluted Transverse Ising Nanowire, J. Magn. Magn. Mater., 336, 75-82.
  • 53. Jiang, W., Li, X.X., Liu, L.M., 2013. Surface Effects on a Multilayer and Multisublattice Cubic Nanowire With Core/shell, Physica E, 53, 29-35.
  • 54. Akıncı, Ü., 2012. Effects of the Randomly Distributed Magnetic Field on the Phase Diagrams of Ising Nanowire I: Discrete Distributions, J. Magn. Magn. Mater., 324(22), 3951-3960.
  • 55. Keskin, M., Şarlı, N., Deviren, B., 2011. Hysteresis Behaviors in a Cylindrical Ising Nanowire, Solid State Commun., 151, 10251030.
  • 56. Şarlı, N., Keskin, M., 2012. Two Distinct Magnetic Susceptibility Peaks and Magnetic Reversal Events in a Cylindrical Core/shell Spin-1 Ising Nanowire, Solid State Commun.,152, 354-359.
  • 57. Magoussi, H., Zaim, A., Kerouad, M., 2013. Effects of the Trimodal Random Field on the Magnetic Properties of a Spin-1 Nanotube, Chin. Phys. B, 22(11), 116401.
  • 58. Deviren, B., Şener, Y., Keskin, M., 2013. Dynamic Magnetic Properties of the Kinetic Cylindrical Ising Nanotube, Physica A, 392, 3969-3983.
  • 59. Kocakaplan, Y., Kantar, E., Keskin, M., 2013. Hysteresis Loops and Compensation Behavior of Cylindrical Transverse Spin-1 Ising Nanowire with the Crystal Field Within Effective-field Theory Based on a Probability Distribution Technique, The European Physical Journal B, 86, 420.
  • 60. Şarlı, N., 2015. Superconductor Core Effect of the Body Centered Orthorhombic Nanolattice Structure, J. Supercond Nov Magn., 28(8), A014, 2355-2363.
  • 61. Şarlı, N., 2014. The Effects of Next Nearestneighbor Exchange Interaction on the Magnetic Properties in the One-dimensional Ising System, Physica E: Low-Dimensional Systems and Nanostructures, 63, 324-328.
  • 62. Kantar, E., 2017. Superconductivity-like Phenomena in an Ferrimagnetic Endohedral Fullerene with Diluted Magnetic Surface, Solid State Commun., 263, 31-37.
  • 63. Özkan, A., Kutlu, B., 2016. The Effect of the Heating Rate on the Phase Transition, Phase Transitions, 89 (12) 1183-1195.
  • 64. Binder, K., 1987. Theory of First-order Phase Transitions, Rep Prog Phys., 50, 783–859.
  • 65. Fernandes, LA, Ruiz-Lorenzo, J.J, Lombardo, M.P., Tarancon, A., 1992. Weak First Order Transitions. The Two-dimensional Potts Model, Phys. Lett. B., 277, 485-490.
  • 66. Li, Z., Jing, C., Chen, J., Yuan, S., Cao, S., Zhang, J., 2007. Observation of Exchange Bias in the Martensitic State of Ni50Mn36Sn14 Heusler Alloy, Appl. Phys. Lett., 91, 112505.
  • 67. Singh, N., Borgahain, B., Srivastava, A.K., Dhar, A., Singh, H.K., 2016. Magnetic Nature of Austenite-martensite Phase Transition and Spin Glass Behaviour in Nanostructured Mn2Ni1.6Sn0.4 Melt-spun Ribbons, Appl. Phys. A, 122 (3), 237.
  • 68. Cong, D.Y., Roth, S., Wang, Y. D., 2014. Superparamagnetism and Superspin Glass Behaviors in Multiferroic NiMn-based Magnetic Shape Memory Alloys, Phys. Status Solidi (B), 251(10), 2126-2134.

Soft Magnetic Characteristic of Ni50Mn36Sn14 Heusler Alloy

Year 2018, Volume: 33 Issue: 2, 139 - 152, 30.06.2018
https://doi.org/10.21605/cukurovaummfd.509100

Abstract

In this study, the magnetic properties of Ni50Mn36Sn14 Heusler alloy (NiMnSn-HA) with the antiferromagnetic interaction between Mn2 and Sn1 components were investigated by using Kaneyoshi approach within the effective field theory. NiMnSn-HA and its components display the second order phase transition. Its Mn2 component also exhibit a weak first order at Tt and a fluctuating hysteresis behavior below Tt. While NiMnSn-HA and its components show a hard magnetic characteristic below Tt. They are soft magnetic as the temperature approaches to TC. It can be said that these behaviors are due to antiferromagnetic interaction between Mn2 and Sn1 components.

References

  • 1. Kittel, C., 2005. Introduction to Solid State Physics (Eight Edition), John Wiley & Sons, New York, 352.
  • 2. Wei, R., Sun, H., Chen, C., Tao, J., Li, F., 2018. Formation of Soft Magnetic High Entropy Amorphous Alloys Composites Containing in Situ Solid Solution Phase, J. Magn. Magn. Mater. 449, 63-67.
  • 3. Becker, T.I., Zimmermann, K., Borin, D.Yu., Stepanov, G.V., Storozhenko, P.A. 2018. Dynamic Response of a Sensor Element Made of Magnetic Hybrid Elastomer with Controllable Properties. J. Magn. Magn. Mater. 449, 77-82.
  • 4. Fan, L.F., Hsiang, H.I., Hung, J.J., 2018. Silane Surface Modification Effects on the Electromagnetic Properties of Phosphatized Iron-based SMCs. Applied Surface Science. 433, 133-138.
  • 5. Alnasir, M. H., Awan, M.S., Manzoor, S., 2018. Magnetic and Magnetothermal Studies of Pure and Doped Gadolinium Silicide Nanoparticles for Self-controlled Hyperthermia Applications. J. Magn. Magn. Mater., 449, 137-144.
  • 6. Hsiang, H.I., Fan, L.F., Hung, J.J., 2018. Phosphoric Acid Addition Effect on the Microstructure and Magnetic Properties of Iron-based Soft Magnetic Composites, J. Magn. Magn. Mater., 447, 1-8.
  • 7. Jo Sunday, K., Taheri, M.L., 2017. Soft Magnetic Composites: Recent Advancements in the Technology, Metal Powder Report, 72(6) 425-429.
  • 8. Lauda, M., Füzer, J., Kollár, P., Strečková, M., Bureš, R., Kováč, J., Baťková, M., Baťko, I., 2018. Magnetic Properties and Loss Separation in FeSi/MnZnFe2O4 Soft Magnetic Composites, J. Magn. Magn. Mater., 411, 12-17.
  • 9. Feng, S.J., Ni, J.L., Zhou, X.H., Wu, X.S., Huang, S.G., Liu, X.S., 2018. Expansion of Initial Magnetization Region in BaTi1.2Co1.2Fe9O19-δ at Low Temperature. J. Magn. Magn. Mater., 447, 21-25.
  • 10. Shen, J., Dai, Q., Ren, S., 2018. Phase Transformation Controlled Tetragonality of MnNi-based Nanocrystals, Nanotechnology, 27, 10LT01.
  • 11. Fathi, R., Sanjabi, S., Bayat N., 2012. Synthesis and Characterization of NiMn Alloy Nanowires Via Electrodeposition in AAO Template, Materials Letters, 66, 346–348.
  • 12. Li, C-M., Hu, Q-M., Yang, R., Johansson, B., Vitos, L., 2015. Theoretical Investigation of the Magnetic and Structural Transitions of Ni-CoMn-Sn Metamagnetic Shape-memory Alloys, Phys. Rev. B, 92, 024105.
  • 13. Ignatiev, V.R., Lebedev, N.G., Orlov, A.A., 2018. Quantum Model of a Hysteresis in a Single-domain Magnetically Soft Ferromagnetic. J. Magn. Magn. Mater., 446, 135–142.
  • 14. Conti S., Lenz, M. Rumpf, M. 2016. Hysteresis in Magnetic Shape Memory Composites: Modeling and Simulation, Journal of the Mechanics and Physics of Solids 89, 272-286.
  • 15. Kantar, E., 2017. Composition, Temperature and Geometric Dependent Hysteresis Behaviours in Ising-type Segmented Nanowire with Magnetic and Diluted Magnetic, and its Soft/hard Magnetic Characteristics, Philosophical Magazine, 97(6), 431-450.
  • 16. Popa, F. , Chicinas, H.F., Marinca, T.F., Chicinas, I., 2017. Influence of Mechanical Alloying and Heat Treatment Processing on the Ni2MnSn Heusler Alloy Structure, Journal of Alloys and Compounds, 716, 137-143.
  • 17. Aydogdu, Y., Turabi, A.S., Aydogdu, A., Kok, M., Yakinci, Z.D., Karaca, H.E., 2016. The Effects of Boron Addition on the Magnetic and Mechanical Properties of NiMnSn Shape Memory Alloys, Journal of Thermal Analysis and Calorimetry, 126(2), 399-406.
  • 18. Aydogdu, Y., Turabi, A.S., Kok, M., Aydogdu, A., Yakinci, Z.D., Aksan, M.A., Yakinci, M.E., Karaca, H.E., 2016. The Effect of Sn Content on Mechanical, Magnetization and Shape Memory Behavior in NiMnSn, J. Nanoalloys and Compounds, 683, 339-345.
  • 19. Hernando, B., Sanchez Llamazares, J.L., Santos, J.D., Sanchez, M.L., Escoda, Ll., Sunol, J.J., Varga, N., Garcia, C., Gonzalez, J., 2009. Grain Oriented NiMnSn and NiMnIn Heusler Alloys Ribbons Produced by Melt Spinning: Martensitic Transformation and Magnetic Properties, J. Magn. Magn. Mater., 321, 763-768.
  • 20. Lin, C., Yan, H., Zhang, Y., Esling, C., Zhao, X., Zuo, L., 2016. Crystal Structure of Modulated Martensite and Crystallographic Correlations Between Martensite Variants of Ni50Mn38Sn12 Alloy, Journal of Applied Crystallography 49(4), 1276-1283.
  • 21. Chernenko, V.A., Barandiaran, J.M., L’vov, V.A., Gutierrez, J., Lazpita, P., Orue, I., 2013. Temperature Dependent Magnetostrains in Polycrystalline Magnetic Shape Memory Heusler Alloys, Journal of Alloys and Compounds, 577S, S305-S308.
  • 22. Guiza-Arguello, V.R., Monroe, J.A., Karaman, I., Hahn, M.S., 2010. Cytocompatibility Evaluation of NiMnSn Meta-magnetic Shape Memory Alloys for Biomedical Applications, Journal of Biomedical Materials Research-Part B Applied Biomaterials, 104(5), 853-863.
  • 23. Kainuma, R., Ito, K., Ito, W., Umetsu, R.Y., Kanomata, T., Ishida, K., 2010. NiMn-based Metamagnetic Shape Memory Alloys, Materials Science Forum, 635, 23-31.
  • 24. Wang, R.L., Yan, J.B., Marchenkov, V.V., Chen, S.S., Tang, S.L., Yang C.P., 2011. Effect of Al Doping on the Martensitic Transition and Magnetic Entropy Change in Ni-Mn-Sn Alloys, Solid State Commun., 151, 1196-1199.
  • 25. de Groot, R.A., Van Engen, P.G., Van Engelen, P.P.T., Buschow, K.H.J., 1990. Magnetic and Magneto-optical Properties of NiMnSb1-xSnx Compounds in Relation to Their Electronic Band Structure, J. Magn. Magn. Mater., 86, 326-332.
  • 26. Huang, L., Cong, D.Y., Suo, H.L., Wang, Y.D., 2014. Giant Magnetic Refrigeration Capacity Near Room Temperature in Ni40Co10Mn40Sn10 Multifunctional Alloy, App. Phys. Lett., 104, 132407.
  • 27. Passamani, E.C., Cordova, C., Alves, A.L., Moscon, P.S., Larica, C., Takeuchi, A.Y., Biondo, A., 2009. Magnetic studies of FeDoped Martensitic Ni2Mn1.44Sn0.56 Heusler alloy, J. Phys. D: Appl. Phys., 42, 215006.
  • 28. Llamazares, J.L.S., Zuniga, H.F., Jara, D.R., Valdes, C.F.S., Fernandez, T.G., Ross, C.A., Garcia, C., 2013. Structural and Magnetic Characterization of the İntermartensitic Phase Transition in NiMnSn Heusler Alloy Ribbons, J. App. Phys., 113, 17A948.
  • 29. Raji, G.R., Uthaman, B., Rajan, R.K., Sharannia, M.P., Thomas, S., Suresh, K.G., Varma M.R., 2016. Martensitic Transition, Spin Glass Behavior and Exchange Bias in Si Substituted Ni50Mn36Sn14 Heusler Alloys, RSC Advances, 6, 32037-32045.
  • 30. Grünebohm, A., Herper, H.C., Entel, P., 2016. On the Rich Magnetic Phase Diagram of (Ni, Co)-Mn-Sn Heusler Alloys, Journal of Physics D: Applied Physics, 49(39), 395001.
  • 31. Wang, X., Shang, J., Wang, F., Jiang, C., Xu, H., 2014. Origin of Unusual Properties in the Ferromagnetic Heusler Alloy Ni–Mn–Sn: A First-principles İnvestigation, Scripta Materialia, 89, 33-36.
  • 32. Siewert, M., Gruner, M.E., Hucht, A., Herper, H.C., Dannenberg, A., Chakrabarti, A., Singh, N., Arroyave, R., Entel, P., 2012. A FirstPrinsiples Investigation of the Compositional Dependent Properties of Magnetic Shape Memory Heusler Alloys, Advanced Engineering Mater., 63, 1-17.
  • 33. Xiao, H.B., Yang, C.P., Wang, R.L., Marchenkov, V.V., Luo, X., 2014. Martensitic Transformation and Phase Stability of In-doped Ni-Mn-Sn Shape Memory Alloys from FirstPrinciples Calculations, J. App. Phys., 115, 203703.
  • 34. Grünebohm, A., Comtesse, D., Hucht, A., Gruner, M.E., Maslovskaya, A., Entel, P., 2014. Optimizing the Magnetocaloric Effect in Ni-Mn-Sn by Substitution: a First-principles Study, IEEE Transactions on Magnetics, 50 (11), 2506004.
  • 35. Duran, A., 2018. Lattice Location Effect of Ni50Mn36Sn14 Heusler Alloy, J. Supercond Nov Magn., 31 (4), 1101-1109.
  • 36. Duran, A., 2018. Lattice Location Effect of Ni50Mn36Sn14 Heusler Alloy, J. Supercond Nov Magn., doi: 10.1007/s10948-018-4686-8 (first online)
  • 37. Kaneyoshi, T., 2009. Magnetizations of a Nanoparticle Described by the Transverse Ising Model, J. Magn. Magn. Mater., 321, 34303435.
  • 38. Kaneyoshi, T., 2010. Phase Diagrams of a Transverse Ising Nanowire, J. Magn. Magn. Mater., 322, 3014-3018.
  • 39. Kaneyoshi, T., 2012. The Possibility of a Compensation Point İnduced by a Transverse Field in Transverse Ising Nanoparticles With a Negative Core–shell Coupling, Solid State Commun., 152, 883-886.
  • 40. Kaneyoshi, T., 2009. Ferrimagnetic Magnetizations of Transverse Ising Thin Films With Diluted Surfaces, J. Magn. Magn. Mater., 321, 3630-3636.
  • 41. Keskin, M., Şarlı, N., 2017. Magnetic Properties of the Binary Nickel/Bismuth Alloy, J. Magn. Magn. Mater., 437, 1-6.
  • 42. Wang, C.D., Ma, R.G., 2013. Force İnduced Phase Transition of Honeycomb-structured Ferroelectric Thin Film, Physica A, 392, 35703577.
  • 43. Şarlı, N., 2016. Generation of an External Magnetic Field With the Spin Orientation Effect in a Single Layer Ising Nanographene, Physica E, 83, 22-29.
  • 44. Şarlı, N., Akbudak, S., Ellialtıoğlu, M.R., 2014. The Peak Effect (PE) Region of the Antiferromagnetic Two Layer Ising Nanographene, Physica B, 452, 18-22.
  • 45. Şarlı, N., Akbudak, S., Polat, Y., Ellialtıoğlu, M.R., 2015. Effective Distance of a Ferromagnetic Trilayer Ising Nanostructure With an ABA Stacking Sequence, Physica A, 434, 194-200.
  • 46. Şarlı, N., 2016. Artificial Magnetism in a Carbon Diamond Nanolattice With the Spin Orientation Effect, Diamond & Related Materials, 64, 103-109.
  • 47. Kantar, E., Keskin, M., 2014. Thermal and Magnetic Properties of Ternary Mixed Ising Nanoparticles With Core–shell Structure: Effective-field Theory Approach, J. Magn. Magn. Mater., 349, 165-172.
  • 48. Jiang, W., Li, X.-X., Liu, L.-M., Chen, J.-N., Zhang, F., 2014. Hysteresis Loop of a Cubic Nanowire in the Presence of the Crystal Field and the Transverse Field. J. Magn. Magn. Mater. 353, 90-98.
  • 49. Şarlı, N., 2015. Paramagnetic Atom Number and Paramagnetic Critical Pressure of the sc, bcc and fcc Nanolattices, J. Magn. Magn. Mater., 374, 238-244.
  • 50. Ertaş, M., Kocakaplan, Y., 2014. Dynamic Behaviors of the Hexagonal Ising Nanowire, Phys. Lett. A, 378, 845-850.
  • 51. Zaim, A., Kerouad, M., Boughrara, M., 2013. Effects of the Random Field on the Magnetic Behavior of Nanowires With Core/shell Morphology, J. Magn. Magn. Mater., 331, 3744.
  • 52. Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Ahuja, R., Dujardin, F., 2013. Phase Diagrams of Diluted Transverse Ising Nanowire, J. Magn. Magn. Mater., 336, 75-82.
  • 53. Jiang, W., Li, X.X., Liu, L.M., 2013. Surface Effects on a Multilayer and Multisublattice Cubic Nanowire With Core/shell, Physica E, 53, 29-35.
  • 54. Akıncı, Ü., 2012. Effects of the Randomly Distributed Magnetic Field on the Phase Diagrams of Ising Nanowire I: Discrete Distributions, J. Magn. Magn. Mater., 324(22), 3951-3960.
  • 55. Keskin, M., Şarlı, N., Deviren, B., 2011. Hysteresis Behaviors in a Cylindrical Ising Nanowire, Solid State Commun., 151, 10251030.
  • 56. Şarlı, N., Keskin, M., 2012. Two Distinct Magnetic Susceptibility Peaks and Magnetic Reversal Events in a Cylindrical Core/shell Spin-1 Ising Nanowire, Solid State Commun.,152, 354-359.
  • 57. Magoussi, H., Zaim, A., Kerouad, M., 2013. Effects of the Trimodal Random Field on the Magnetic Properties of a Spin-1 Nanotube, Chin. Phys. B, 22(11), 116401.
  • 58. Deviren, B., Şener, Y., Keskin, M., 2013. Dynamic Magnetic Properties of the Kinetic Cylindrical Ising Nanotube, Physica A, 392, 3969-3983.
  • 59. Kocakaplan, Y., Kantar, E., Keskin, M., 2013. Hysteresis Loops and Compensation Behavior of Cylindrical Transverse Spin-1 Ising Nanowire with the Crystal Field Within Effective-field Theory Based on a Probability Distribution Technique, The European Physical Journal B, 86, 420.
  • 60. Şarlı, N., 2015. Superconductor Core Effect of the Body Centered Orthorhombic Nanolattice Structure, J. Supercond Nov Magn., 28(8), A014, 2355-2363.
  • 61. Şarlı, N., 2014. The Effects of Next Nearestneighbor Exchange Interaction on the Magnetic Properties in the One-dimensional Ising System, Physica E: Low-Dimensional Systems and Nanostructures, 63, 324-328.
  • 62. Kantar, E., 2017. Superconductivity-like Phenomena in an Ferrimagnetic Endohedral Fullerene with Diluted Magnetic Surface, Solid State Commun., 263, 31-37.
  • 63. Özkan, A., Kutlu, B., 2016. The Effect of the Heating Rate on the Phase Transition, Phase Transitions, 89 (12) 1183-1195.
  • 64. Binder, K., 1987. Theory of First-order Phase Transitions, Rep Prog Phys., 50, 783–859.
  • 65. Fernandes, LA, Ruiz-Lorenzo, J.J, Lombardo, M.P., Tarancon, A., 1992. Weak First Order Transitions. The Two-dimensional Potts Model, Phys. Lett. B., 277, 485-490.
  • 66. Li, Z., Jing, C., Chen, J., Yuan, S., Cao, S., Zhang, J., 2007. Observation of Exchange Bias in the Martensitic State of Ni50Mn36Sn14 Heusler Alloy, Appl. Phys. Lett., 91, 112505.
  • 67. Singh, N., Borgahain, B., Srivastava, A.K., Dhar, A., Singh, H.K., 2016. Magnetic Nature of Austenite-martensite Phase Transition and Spin Glass Behaviour in Nanostructured Mn2Ni1.6Sn0.4 Melt-spun Ribbons, Appl. Phys. A, 122 (3), 237.
  • 68. Cong, D.Y., Roth, S., Wang, Y. D., 2014. Superparamagnetism and Superspin Glass Behaviors in Multiferroic NiMn-based Magnetic Shape Memory Alloys, Phys. Status Solidi (B), 251(10), 2126-2134.
There are 68 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ayşe Duran

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 33 Issue: 2

Cite

APA Duran, A. (2018). Soft Magnetic Characteristic of Ni50Mn36Sn14 Heusler Alloy. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 139-152. https://doi.org/10.21605/cukurovaummfd.509100
AMA Duran A. Soft Magnetic Characteristic of Ni50Mn36Sn14 Heusler Alloy. cukurovaummfd. June 2018;33(2):139-152. doi:10.21605/cukurovaummfd.509100
Chicago Duran, Ayşe. “Soft Magnetic Characteristic of Ni50Mn36Sn14 Heusler Alloy”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33, no. 2 (June 2018): 139-52. https://doi.org/10.21605/cukurovaummfd.509100.
EndNote Duran A (June 1, 2018) Soft Magnetic Characteristic of Ni50Mn36Sn14 Heusler Alloy. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33 2 139–152.
IEEE A. Duran, “Soft Magnetic Characteristic of Ni50Mn36Sn14 Heusler Alloy”, cukurovaummfd, vol. 33, no. 2, pp. 139–152, 2018, doi: 10.21605/cukurovaummfd.509100.
ISNAD Duran, Ayşe. “Soft Magnetic Characteristic of Ni50Mn36Sn14 Heusler Alloy”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33/2 (June 2018), 139-152. https://doi.org/10.21605/cukurovaummfd.509100.
JAMA Duran A. Soft Magnetic Characteristic of Ni50Mn36Sn14 Heusler Alloy. cukurovaummfd. 2018;33:139–152.
MLA Duran, Ayşe. “Soft Magnetic Characteristic of Ni50Mn36Sn14 Heusler Alloy”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 33, no. 2, 2018, pp. 139-52, doi:10.21605/cukurovaummfd.509100.
Vancouver Duran A. Soft Magnetic Characteristic of Ni50Mn36Sn14 Heusler Alloy. cukurovaummfd. 2018;33(2):139-52.