Research Article
BibTex RIS Cite

Üst Ekstremite Robot Protezleri için Duyusal İkame Yöntemlerinin Değerlendirilmesi Amaçlı Bir Deney Düzeneği

Year 2018, Volume: 33 Issue: 2, 215 - 224, 30.06.2018
https://doi.org/10.21605/cukurovaummfd.509851

Abstract

Duyusal ikame, robotik protez kullanıcılarına yapay duyu geribildirimi sağlamak için kullanılan kolay, uygun maliyetli ve çoğunlukla tercih edilen bir yöntemdir. Böyle bir duyusal geribildirim, mesela yapay propriosepsiyon, titreşim gibi farklı bir duyusal kiple vücudun farklı yerlerinde sağlanmaktadır. Bu çalışmada, yapay propriyosepsiyon geribildiriminin koordineli manipülasyonlar üzerindeki katkısını belirlemek için kullanılabilecek yeni bir yöntem ve deney düzeneği önerilmektedir. Düzenek yeni bir haptik arayüz, bir girdi cihazı, bir kuvvet algılayıcısı ve bir sanal ortamdan oluşmaktadır. Geliştirilen haptik arayüzü, deneylerle teknik olarak değerlendirilmiştir. Ayrıca, deneklerin gerçek ve sanal yayları karşılaştırdığı bir psikofizik test de yapılmıştır. Sonuçlar, deney düzeneğinin amaçlanan yayları başarılı bir şekilde sunabildiğini göstermiştir. Önerilen deneysel yöntem, yayların bükülme prensibiyle çalışan Dirençlilik-Maharet testine dayanmaktadır. Bu kararsız görev büyük ölçüde kuvvet ve konum koordinasyonuna bağlı olduğu için, bu çalışmada önerilen sanal uygulama tabanlı deneysel metod, duyusal ikame yöntemlerini test etmek için yenilikçi bir ortam sağlamaktadır.

References

  • 1. Antfolk, C., D’Alonzo, M., Rosén, B., Lundborg, G., Sebelius, F., Cipriani, C., 2013. Sensory Feedback in Upper Limb Prosthetics. Expert Review of Medical Devices, 10(1), 45–54. doi:10.1586/erd.12.68
  • 2. D’Alonzo, M., Cipriani, C., 2012. Vibrotactile Sensory Substitution Elicits Feeling of Ownership of an Alien Hand. PloS one, 7(11), e50756. doi:10.1371/journal.pone.0050756
  • 3. Dudkiewicz, I., Gabrielov, R., Seiv-Ner, I., Zelig, G., Heim, M., 2004. Evaluation of Prosthetic Usage in Upper Limb Amputees. Disability and Rehabilitation, 26(1), 60–63. doi:10.1080/09638280410001645094
  • 4. Østlie, K., Lesjø, I. M., Franklin, R. J., Garfelt, B., Skjeldal, O. H., Magnus, P., 2012. Prosthesis Rejection in Acquired Major Upperlimb Amputees: A Population-based Survey. Disability and Rehabilitation: Assistive Technology, 7(4), 294–303. doi:10.3109/17483107.2011.635405
  • 5. Sainburg, R.L., Ghilardi, M.F., Poizner, H., Ghez, C., 1995. Control of Limb Dynamics in Normal Subjects and Patients Without Proprioception. Journal of neurophysiology, 73(2), 820–35.
  • 6. Witteveen, H.J.B., Droog, E.A., Rietman, J.S., Veltink, P.H., 2012. Vibro- and Electrotactile User Feedback on Hand Opening for Myoelectric Forearm Prostheses. IEEE Transactions on Bio-medical Engineering, 59(8), 2219–26. doi:10.1109/TBME.2012.2200678
  • 7. Mann, R., Reimers, S., 1970. Kinesthetic Sensing for the EMG Controlled “Boston Arm.” IEEE Transactions on Man Machine Systems,11(1), 110–115. doi:10.1109/TMMS.1970.299971
  • 8. Wheeler, J., Bark, K., Savall, J., Cutkosky, M., 2010. Investigation of Rotational Skin Stretch for Proprioceptive Feedback with Application to Myoelectric Systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(1), 58–66. doi:10.1109/TNSRE.2009.2039602
  • 9. Nohama, P., Lopes, A.V., Cliquet Júnior, A., 1995. Electrotactile Stimulator for Artificial Proprioception. Artificial Organs, 19(3), 225–30.
  • 10. Arieta, A.H., Afthinos, M., Dermitzakis, K., 2011. Apparent Moving Sensation Recognition in Prosthetic Applications. Procedia Computer Science, 7, 133–135. doi:10.1016/j.procs.2011.09.037
  • 11. Pistohl, T., Joshi, D., Ganesh, G., Jackson, A., Nazarpour, K., 2015. Artificial Proprioceptive Feedback for Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering. doi:10.1109/TNSRE.2014.2355856
  • 12. Patterson, P.E., Katz, J.A., 1992. Design and Evaluation of a Sensory Feedback System that Provides Grasping Pressure in a Myoelectric Hand. The Journal of Rehabilitation Research and Development, 29(1), 1. doi:10.1682/JRRD.1992.01.0001
  • 13. Blank, A., Okamura, A.M., Kuchenbecker, K. J., 2010. Identifying the Role of Proprioception in Upper-limb Prosthesis Control. ACM Transactions on Applied Perception,7(3),1–23. doi:10.1145/1773965.1773966
  • 14. Gurari, N., Kuchenbecker, K.J., Okamura, A. M., 2013. Perception of Springs with Visual and Proprioceptive Motion Cues: Implications for Prosthetics. IEEE Transactions on HumanMachine Systems, 43(1), 102–114. doi:10.1109/TSMCA.2012.2221038
  • 15. Stepp, C.E., Matsuoka, Y., 2012. Vibrotactile Sensory Substitution for Object Manipulation: Amplitude Versus Pulse Train Frequency Modulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 31–7. doi:10.1109/TNSRE.2011.2170856
  • 16. Chatterjee, A., Chaubey, P., Martin, J., Thakor, N., 2008. Testing a Prosthetic Haptic Feedback Simulator With an Interactive Force Matching Task. JPO Journal of Prosthetics and Orthotics, 20(2), 27–34. doi:10.1097/01. JPO.0000311041.61628.be
  • 17. Brown, J.D., Shelley, M.K., Gardner, D., Gansallo, E.A., Gillespie, R.B., 2016. NonColocated Kinesthetic Display Limits Compliance Discrimination in the Absence of Terminal Force Cues. IEEE Transactions on Haptics, 9(3), 387-96. doi:10.1109/TOH.2016.2554120
  • 18. Chatterjee, A., Chaubey, P., Martin, J., Thakor, N.V., 2008. Quantifying Prosthesis Control Improvements using a Vibrotactile Representation of Grip Force. 2008 IEEE Region 5 Conference, 1–5. doi:10.1109/TPSD.2008.4562727
  • 19. Valero-Cuevas, F.J., 2005. An İntegrative Approach to the Biomechanical Function and Neuromuscular Control of the Fingers. Journal of Biomechanics, 38(4), 673–84. doi:10.1016/j.jbiomech.2004.04.006
  • 20. Valero-Cuevas, F.J., Smaby, N., Venkadesan, M., Peterson, M., Wright, T., 2003. The Strength-dexterity Test as a Measure of Dynamic Pinch Performance. Journal of Biomechanics, 36(2), 265–70.
  • 21. Venkadesan, M., Guckenheimer, J., ValeroCuevas, F.J., 2007. Manipulating the Edge of Instability. Journal of Biomechanics, 40(8), 1653–61. doi:10.1016/j.jbiomech.2007.01.022
  • 22. Gurari, N., Kuchenbecker, K.J., Okamura, A. M., 2009. Stiffness Discrimination with Visual and Proprioceptive Cues. In IEEE World Haptics Conference, 121–126. doi:10.1109/WHC.2009.4810845
  • 23. Cipriani, C., D’Alonzo, M., Carrozza, M.C., 2012. A Miniature Vibrotactile Sensory Substitution Device for Multifingered Hand Prosthetics. IEEE Transactions on Bio-medical Engineering, 59(2), 400–8. doi:10.1109/TBME.2011.2173342
  • 24. Samur, E., 2012. Performance Metrics for Haptic Interfaces. London: Springer London. doi:10.1007/978-1-4471-4225-6
  • 25. Wu, B., Klatzky, R.L., Hollis, R.L., 2011. Force, Torque, and Stiffness: Interactions in Perceptual Discrimination. IEEE Transactions on Haptics. doi:10.1109/TOH.2011.3

An Experimental Setup to Evaluate Sensory Substitution Methods for Upper Limb Robotic Prostheses

Year 2018, Volume: 33 Issue: 2, 215 - 224, 30.06.2018
https://doi.org/10.21605/cukurovaummfd.509851

Abstract

Sensory substitution is an easy, cost effective and mostly-preferred method to provide artificial sensory feedback to users of robotic prostheses. This sensory feedback, such as artificial proprioception, is provided through different sensory modalities, such as vibration, at different locations on the body. In this study, we propose a new methodology and an experimental setup, which are to be used to determine contribution of artificial proprioception feedback on coordinated manipulations. The setup consists of a novel haptic interface, an input device, a force sensor, and a virtual environment. Experiments were performed to technically evaluate the developed haptic interface. To further validate the interface, we conducted a psychophysical test in which subjects compared real and virtual springs with different stiffness constants. Results showed that the setup was able to successfully render the intended springs. The experimental methodology is based on the Strength-Dexterity test, which works on the principle of buckling of compression springs. Since this unstable task highly depends on coordination of force and position, its virtual implementation provides a novel platform to test sensory substitution techniques.

References

  • 1. Antfolk, C., D’Alonzo, M., Rosén, B., Lundborg, G., Sebelius, F., Cipriani, C., 2013. Sensory Feedback in Upper Limb Prosthetics. Expert Review of Medical Devices, 10(1), 45–54. doi:10.1586/erd.12.68
  • 2. D’Alonzo, M., Cipriani, C., 2012. Vibrotactile Sensory Substitution Elicits Feeling of Ownership of an Alien Hand. PloS one, 7(11), e50756. doi:10.1371/journal.pone.0050756
  • 3. Dudkiewicz, I., Gabrielov, R., Seiv-Ner, I., Zelig, G., Heim, M., 2004. Evaluation of Prosthetic Usage in Upper Limb Amputees. Disability and Rehabilitation, 26(1), 60–63. doi:10.1080/09638280410001645094
  • 4. Østlie, K., Lesjø, I. M., Franklin, R. J., Garfelt, B., Skjeldal, O. H., Magnus, P., 2012. Prosthesis Rejection in Acquired Major Upperlimb Amputees: A Population-based Survey. Disability and Rehabilitation: Assistive Technology, 7(4), 294–303. doi:10.3109/17483107.2011.635405
  • 5. Sainburg, R.L., Ghilardi, M.F., Poizner, H., Ghez, C., 1995. Control of Limb Dynamics in Normal Subjects and Patients Without Proprioception. Journal of neurophysiology, 73(2), 820–35.
  • 6. Witteveen, H.J.B., Droog, E.A., Rietman, J.S., Veltink, P.H., 2012. Vibro- and Electrotactile User Feedback on Hand Opening for Myoelectric Forearm Prostheses. IEEE Transactions on Bio-medical Engineering, 59(8), 2219–26. doi:10.1109/TBME.2012.2200678
  • 7. Mann, R., Reimers, S., 1970. Kinesthetic Sensing for the EMG Controlled “Boston Arm.” IEEE Transactions on Man Machine Systems,11(1), 110–115. doi:10.1109/TMMS.1970.299971
  • 8. Wheeler, J., Bark, K., Savall, J., Cutkosky, M., 2010. Investigation of Rotational Skin Stretch for Proprioceptive Feedback with Application to Myoelectric Systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(1), 58–66. doi:10.1109/TNSRE.2009.2039602
  • 9. Nohama, P., Lopes, A.V., Cliquet Júnior, A., 1995. Electrotactile Stimulator for Artificial Proprioception. Artificial Organs, 19(3), 225–30.
  • 10. Arieta, A.H., Afthinos, M., Dermitzakis, K., 2011. Apparent Moving Sensation Recognition in Prosthetic Applications. Procedia Computer Science, 7, 133–135. doi:10.1016/j.procs.2011.09.037
  • 11. Pistohl, T., Joshi, D., Ganesh, G., Jackson, A., Nazarpour, K., 2015. Artificial Proprioceptive Feedback for Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering. doi:10.1109/TNSRE.2014.2355856
  • 12. Patterson, P.E., Katz, J.A., 1992. Design and Evaluation of a Sensory Feedback System that Provides Grasping Pressure in a Myoelectric Hand. The Journal of Rehabilitation Research and Development, 29(1), 1. doi:10.1682/JRRD.1992.01.0001
  • 13. Blank, A., Okamura, A.M., Kuchenbecker, K. J., 2010. Identifying the Role of Proprioception in Upper-limb Prosthesis Control. ACM Transactions on Applied Perception,7(3),1–23. doi:10.1145/1773965.1773966
  • 14. Gurari, N., Kuchenbecker, K.J., Okamura, A. M., 2013. Perception of Springs with Visual and Proprioceptive Motion Cues: Implications for Prosthetics. IEEE Transactions on HumanMachine Systems, 43(1), 102–114. doi:10.1109/TSMCA.2012.2221038
  • 15. Stepp, C.E., Matsuoka, Y., 2012. Vibrotactile Sensory Substitution for Object Manipulation: Amplitude Versus Pulse Train Frequency Modulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 31–7. doi:10.1109/TNSRE.2011.2170856
  • 16. Chatterjee, A., Chaubey, P., Martin, J., Thakor, N., 2008. Testing a Prosthetic Haptic Feedback Simulator With an Interactive Force Matching Task. JPO Journal of Prosthetics and Orthotics, 20(2), 27–34. doi:10.1097/01. JPO.0000311041.61628.be
  • 17. Brown, J.D., Shelley, M.K., Gardner, D., Gansallo, E.A., Gillespie, R.B., 2016. NonColocated Kinesthetic Display Limits Compliance Discrimination in the Absence of Terminal Force Cues. IEEE Transactions on Haptics, 9(3), 387-96. doi:10.1109/TOH.2016.2554120
  • 18. Chatterjee, A., Chaubey, P., Martin, J., Thakor, N.V., 2008. Quantifying Prosthesis Control Improvements using a Vibrotactile Representation of Grip Force. 2008 IEEE Region 5 Conference, 1–5. doi:10.1109/TPSD.2008.4562727
  • 19. Valero-Cuevas, F.J., 2005. An İntegrative Approach to the Biomechanical Function and Neuromuscular Control of the Fingers. Journal of Biomechanics, 38(4), 673–84. doi:10.1016/j.jbiomech.2004.04.006
  • 20. Valero-Cuevas, F.J., Smaby, N., Venkadesan, M., Peterson, M., Wright, T., 2003. The Strength-dexterity Test as a Measure of Dynamic Pinch Performance. Journal of Biomechanics, 36(2), 265–70.
  • 21. Venkadesan, M., Guckenheimer, J., ValeroCuevas, F.J., 2007. Manipulating the Edge of Instability. Journal of Biomechanics, 40(8), 1653–61. doi:10.1016/j.jbiomech.2007.01.022
  • 22. Gurari, N., Kuchenbecker, K.J., Okamura, A. M., 2009. Stiffness Discrimination with Visual and Proprioceptive Cues. In IEEE World Haptics Conference, 121–126. doi:10.1109/WHC.2009.4810845
  • 23. Cipriani, C., D’Alonzo, M., Carrozza, M.C., 2012. A Miniature Vibrotactile Sensory Substitution Device for Multifingered Hand Prosthetics. IEEE Transactions on Bio-medical Engineering, 59(2), 400–8. doi:10.1109/TBME.2011.2173342
  • 24. Samur, E., 2012. Performance Metrics for Haptic Interfaces. London: Springer London. doi:10.1007/978-1-4471-4225-6
  • 25. Wu, B., Klatzky, R.L., Hollis, R.L., 2011. Force, Torque, and Stiffness: Interactions in Perceptual Discrimination. IEEE Transactions on Haptics. doi:10.1109/TOH.2011.3
There are 25 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mehdi Hojatmadani This is me

Evren Samur This is me

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 33 Issue: 2

Cite

APA Hojatmadani, M., & Samur, E. (2018). An Experimental Setup to Evaluate Sensory Substitution Methods for Upper Limb Robotic Prostheses. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 215-224. https://doi.org/10.21605/cukurovaummfd.509851
AMA Hojatmadani M, Samur E. An Experimental Setup to Evaluate Sensory Substitution Methods for Upper Limb Robotic Prostheses. cukurovaummfd. June 2018;33(2):215-224. doi:10.21605/cukurovaummfd.509851
Chicago Hojatmadani, Mehdi, and Evren Samur. “An Experimental Setup to Evaluate Sensory Substitution Methods for Upper Limb Robotic Prostheses”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33, no. 2 (June 2018): 215-24. https://doi.org/10.21605/cukurovaummfd.509851.
EndNote Hojatmadani M, Samur E (June 1, 2018) An Experimental Setup to Evaluate Sensory Substitution Methods for Upper Limb Robotic Prostheses. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33 2 215–224.
IEEE M. Hojatmadani and E. Samur, “An Experimental Setup to Evaluate Sensory Substitution Methods for Upper Limb Robotic Prostheses”, cukurovaummfd, vol. 33, no. 2, pp. 215–224, 2018, doi: 10.21605/cukurovaummfd.509851.
ISNAD Hojatmadani, Mehdi - Samur, Evren. “An Experimental Setup to Evaluate Sensory Substitution Methods for Upper Limb Robotic Prostheses”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33/2 (June 2018), 215-224. https://doi.org/10.21605/cukurovaummfd.509851.
JAMA Hojatmadani M, Samur E. An Experimental Setup to Evaluate Sensory Substitution Methods for Upper Limb Robotic Prostheses. cukurovaummfd. 2018;33:215–224.
MLA Hojatmadani, Mehdi and Evren Samur. “An Experimental Setup to Evaluate Sensory Substitution Methods for Upper Limb Robotic Prostheses”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 33, no. 2, 2018, pp. 215-24, doi:10.21605/cukurovaummfd.509851.
Vancouver Hojatmadani M, Samur E. An Experimental Setup to Evaluate Sensory Substitution Methods for Upper Limb Robotic Prostheses. cukurovaummfd. 2018;33(2):215-24.