Research Article
BibTex RIS Cite

PCB Dairesel Yama Anten Tabanlı Etanol ve Metanol Algılayıcı Tasarımı

Year 2018, Volume: 33 Issue: 2, 287 - 296, 30.06.2018
https://doi.org/10.21605/cukurovaummfd.510139

Abstract

Bu çalışmada, PCB (Printed Circuit Board - Baskı Devre) dairesel mikroşerit anten kullanılarak etanol+su ve metanol+su karışımlarının miktarlarını algılayabilecek bir algılayıcı tasarlanmıştır. Antenin alt zemini üzerinde tam merkezde açılan dairesel bir boşluk ile birlikte sistemin 3 GHz frekansında çalışabilmesi için optimizasyon yapılmış ve bunun sonucunda geometrik değerler elde edilmiştir. Analizler gerçekleştirilirken dairesel boşluğa, alt iletken yapıya temas etmeden sıvı karışım numunesinin yerleştirilmesi sağlanmış ve rezonans frekansının değişiminin test altındaki numunelerin karışım yüzdeleriyle ilişkisi ortaya konmuştur. Rezonans frekansı etanol su karışımı için 44 MHz’lik bir algılama bandı sunmakta ve bu aralık metanol su karışımı için yaklaşık 38 MHz civarında olmaktadır. Rezonans frekanslarında oluşan değişimler doğrusala çok yakın olup, hem etanol hem de metanol karışımlarının yüzdelerini çok yüksek hassasiyetle ve gerçek zamanlı olarak belirlemeye imkan sağlamaktadır. Tasarlanan anten ve algılayıcı yapı hem düşük profile, düşük maliyete sahip olup hem de yüksek hassasiyetli ve eş zamanlı ölçüm kapasitesine sahiptir.

References

  • 1. Altintas, O., Aksoy, M., Akgol, O., Unal, E., Karaaslan, M., Sabah, C., 2017. Fluid, Strain and Rotation Sensing Applications by using Metamaterial Based Sensor Journal of the Electrochemical Society, 164: B567-B573.
  • 2. Gregory, A.P., Clarke, R.N., 2006. A Review of RF and Microwave Techniques for Dielectric Measurements on Polar Liquids, IEEE Trans. Dielectr. Insul. 13, 727-743.
  • 3. Akhavan, H.G., Mirshekar-Syahkal, D., 1999. Slot Antennas for Measurement of Properties of Dielectrics at Microwave Frequencies, Antennas and Propagation, 8-11.
  • 4. Chang, F.C., Shiu, J., Yin, Y.Z., Lin, C.W., 2012. A Novel Design of Antenna for Biosensing Applications, IMCS, 407-410.
  • 5. Pal, A.A., Mehta, A., Marhic, M.E., Chan, K.C., Teng, K.S., 2011. Microresonator Antenna for Biosensing Applications, in IET Micro & Nano Letters, 6(8), 665-667.
  • 6. Yi, X., Cho, C., Cooper, J., Wang, Y., Tentzeris, M.M., Leon, R.T., 2013. Passive Wireless Antenna Sensor for Strain and Crack Sensing-Electromagnetic Modeling, Simulation and Testing, Smart Materials and Structures, 22,085009, 1-17.
  • 7. Ebrahimi, A., Withayachumnankul, W., AlSarawi, S., Abbott, D., 2014. High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization. IEEE Sens. J. 14, 1345–1351.
  • 8. Kim, H.K., Yoo, M., Lim, S., 2015. Novel Ethanol Chemical Sensor using Microfluidic Metamaterial. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USN National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; 1358–1359.
  • 9. Seo, Y., Memon, M.U., Lim, S., 2016. Microfluidic Eighth-mode Substrateintegrated- Waveguide Antenna for Compact Ethanol Chemical Sensor Application. IEEE Trans. Antennas Propag. 64, 3218–3222.
  • 10. Bakir, M., 2017. Electromagnetic-based Microfluidic Sensor Applications. J. Electrochem. Soc. 164, B488–B494.
  • 11. Ling, K., Yoo, M., Su, W., Kim, K., Cook, B., Tentzeris, M.M., Lim, S., 2015. Microfluidic Tunable Inkjet-printed Metamaterial Absorber on Paper. Opt. Express, 23, 110–120.
  • 12. Salim, A., Lim, S., 2016. Complementary Split-ring Resonator-loaded Microfluidic Ethanol Chemical Sensor. Sensors, 16, 1802.

PCB Circular Patch Antenna Based Ethanol and Methanol Sensor Design

Year 2018, Volume: 33 Issue: 2, 287 - 296, 30.06.2018
https://doi.org/10.21605/cukurovaummfd.510139

Abstract

In this study, a sensor that can distinguish ethanol+water and methanol+water mixture amount by using PCB (Printed Circuit Board) circular microstrip antenna is designed. On the ground plane of the antenna, a circular slot was made at the center and it was optimized so that the proposed sensor can work at f=3 GHz frequency and the geometrical dimensions are calculated accordingly. While performing the analysis, the placement of the liquid mixture is arranged so that the sample under test does not touch to the ground plane and the correlation between the percentages of the mixtures with the changes in the resonance frequency is determined. The resonance frequency shifts provide a frequency range of 44 MHz and this range is about 38 MHz for methanol mixtures. The changes observed in the resonance frequency are very close to linear changes which allow the determination of the percentages of both ethanol and methanol mixtures with very high precision and in real time. The designed antenna and sensor structure has low profile, low cost and also the capacity of real-time and very precise measurement.

References

  • 1. Altintas, O., Aksoy, M., Akgol, O., Unal, E., Karaaslan, M., Sabah, C., 2017. Fluid, Strain and Rotation Sensing Applications by using Metamaterial Based Sensor Journal of the Electrochemical Society, 164: B567-B573.
  • 2. Gregory, A.P., Clarke, R.N., 2006. A Review of RF and Microwave Techniques for Dielectric Measurements on Polar Liquids, IEEE Trans. Dielectr. Insul. 13, 727-743.
  • 3. Akhavan, H.G., Mirshekar-Syahkal, D., 1999. Slot Antennas for Measurement of Properties of Dielectrics at Microwave Frequencies, Antennas and Propagation, 8-11.
  • 4. Chang, F.C., Shiu, J., Yin, Y.Z., Lin, C.W., 2012. A Novel Design of Antenna for Biosensing Applications, IMCS, 407-410.
  • 5. Pal, A.A., Mehta, A., Marhic, M.E., Chan, K.C., Teng, K.S., 2011. Microresonator Antenna for Biosensing Applications, in IET Micro & Nano Letters, 6(8), 665-667.
  • 6. Yi, X., Cho, C., Cooper, J., Wang, Y., Tentzeris, M.M., Leon, R.T., 2013. Passive Wireless Antenna Sensor for Strain and Crack Sensing-Electromagnetic Modeling, Simulation and Testing, Smart Materials and Structures, 22,085009, 1-17.
  • 7. Ebrahimi, A., Withayachumnankul, W., AlSarawi, S., Abbott, D., 2014. High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization. IEEE Sens. J. 14, 1345–1351.
  • 8. Kim, H.K., Yoo, M., Lim, S., 2015. Novel Ethanol Chemical Sensor using Microfluidic Metamaterial. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USN National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; 1358–1359.
  • 9. Seo, Y., Memon, M.U., Lim, S., 2016. Microfluidic Eighth-mode Substrateintegrated- Waveguide Antenna for Compact Ethanol Chemical Sensor Application. IEEE Trans. Antennas Propag. 64, 3218–3222.
  • 10. Bakir, M., 2017. Electromagnetic-based Microfluidic Sensor Applications. J. Electrochem. Soc. 164, B488–B494.
  • 11. Ling, K., Yoo, M., Su, W., Kim, K., Cook, B., Tentzeris, M.M., Lim, S., 2015. Microfluidic Tunable Inkjet-printed Metamaterial Absorber on Paper. Opt. Express, 23, 110–120.
  • 12. Salim, A., Lim, S., 2016. Complementary Split-ring Resonator-loaded Microfluidic Ethanol Chemical Sensor. Sensors, 16, 1802.
There are 12 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Oğuzhan Akgöl

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 33 Issue: 2

Cite

APA Akgöl, O. (2018). PCB Dairesel Yama Anten Tabanlı Etanol ve Metanol Algılayıcı Tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 287-296. https://doi.org/10.21605/cukurovaummfd.510139
AMA Akgöl O. PCB Dairesel Yama Anten Tabanlı Etanol ve Metanol Algılayıcı Tasarımı. cukurovaummfd. June 2018;33(2):287-296. doi:10.21605/cukurovaummfd.510139
Chicago Akgöl, Oğuzhan. “PCB Dairesel Yama Anten Tabanlı Etanol Ve Metanol Algılayıcı Tasarımı”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33, no. 2 (June 2018): 287-96. https://doi.org/10.21605/cukurovaummfd.510139.
EndNote Akgöl O (June 1, 2018) PCB Dairesel Yama Anten Tabanlı Etanol ve Metanol Algılayıcı Tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33 2 287–296.
IEEE O. Akgöl, “PCB Dairesel Yama Anten Tabanlı Etanol ve Metanol Algılayıcı Tasarımı”, cukurovaummfd, vol. 33, no. 2, pp. 287–296, 2018, doi: 10.21605/cukurovaummfd.510139.
ISNAD Akgöl, Oğuzhan. “PCB Dairesel Yama Anten Tabanlı Etanol Ve Metanol Algılayıcı Tasarımı”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33/2 (June 2018), 287-296. https://doi.org/10.21605/cukurovaummfd.510139.
JAMA Akgöl O. PCB Dairesel Yama Anten Tabanlı Etanol ve Metanol Algılayıcı Tasarımı. cukurovaummfd. 2018;33:287–296.
MLA Akgöl, Oğuzhan. “PCB Dairesel Yama Anten Tabanlı Etanol Ve Metanol Algılayıcı Tasarımı”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 33, no. 2, 2018, pp. 287-96, doi:10.21605/cukurovaummfd.510139.
Vancouver Akgöl O. PCB Dairesel Yama Anten Tabanlı Etanol ve Metanol Algılayıcı Tasarımı. cukurovaummfd. 2018;33(2):287-96.