Research Article
BibTex RIS Cite

Microstrip Patch Antennas Covered with Chiral Metamaterial Structures

Year 2018, Volume: 33 Issue: 3, 245 - 254, 30.09.2018
https://doi.org/10.21605/cukurovaummfd.504766

Abstract

In this working we present gain characteristic of microstrip patch antennas covered with chiral metamaterial. In order to determine gain of antennas covered with chiral metamaterial structure, S11 parameters and radiation pattern of antennas with chiral metamaterial and without chiral metamaterial are plotted and compared each other. The simulation results show that antennas covered with chiral metamaterial structure increase either gain or radiation pattern or both at operation frequency. 

References

  • 1. Waterhouse, R., 2003. Micro Strip Patch Antennas, A Designer's Guide, Kluwer Academic Publishers, Boston, MA.
  • 2. Jafargholi, A., Manouchehr K., 2012. Dipole Antenna Miniaturization Using Single-Cell Metamaterial, Applied Computational Electromagnetics Society Journal, 27, 3.
  • 3. Palandoken, M., Grede, A., Henke, H., 2009. Broadband Microstrip Antenna with Lefthanded Metamaterials, IEEE Transactions on Antennas and Propagation, 57(2), 331-338.
  • 4. Veysi, M., Jafargholi, A., 2012. Directivity and Bandwidth Enhancement of Proximity- Coupled Microstrip Antenna using Metamaterial Cover, Applied Computational Electromagnetics Society Journal, 27, 11.
  • 5. Burokur, S.N., Latrach, M., Toutain, S., 2005. Theoretical Investigation of a Circular Patch Antenna in the Presence of a Left-handed Medium, IEEE Antennas and Wireless Propagation Letters, 4:183-186.
  • 6. Tao, L., Xiang-Yu, C., Yun, G., Qun Yang Wen‐Qiang, Li., 2011. Design of Miniaturized Broadband and High Gain Metamaterial Patch Antenna, Microwave and Optical Technology Letters, 53.12: 2858-2861.
  • 7. Veselago, V.G., 1968. The Electrodynamics of Substances with Simultaneously Negative Values of and 􀟤, Soviet Physics Uspekhi, 10(4), 509.
  • 8. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., 1999. Magnetism from Conductors and Enhanced Nonlinear Phenomena, IEEE Transactions on Microwave Theory and Techniques, 47.11: 2075-2084.
  • 9. Shelby, R.A., Smith, D.R., Schultz, S., 2001. Experimental Verification of a Negative Index of Refraction, Science, 292(5514), 77-79.
  • 10. Smith, D.R., Pendry, J.B., 2004. Wiltshire, Mike CK. Metamaterials and Negative Refractive Index, Science, 305(5685), 788-792.
  • 11. Unal, E., Dincer, F., Tetik, E., Karaaslan, M., Bakir, M., Sabah, C., 2015. Tunable Perfect Metamaterial Absorber Design Using the Golden Ratio and Energy Harvesting and Sensor Applications, Journal of Materials Science: Materials in Electronics, 26(12), 9735-9740.
  • 12. Pendry, J.B., 2000. Negative Refraction Makes a Perfect Lens, Physical Review Letters, 85(18), 3966.
  • 13. Garcia, N., Nieto, V.M., 2002. Left-handed Materials do not Make a Perfect Lens, Physical Review Letters, 88(20), 207403.
  • 14. Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Demirel, E., Sabah, C., 2014. Perfect Metamaterial Absorber with Polarization and Incident Angle Independencies Based on Ring and Cross-wire Resonators for Shielding and a Sensor Application, Optics Communications, 322: 137-142.
  • 15. Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Demirel, E., Sabah, C., 2014. Polarization and Angle Independent Perfect Metamaterial Absorber Based on Discontinuous Cross-wirestrips, Journal of Electromagnetic Waves and Applications, 28(6), 741-751.
  • 16. Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Sabah, C., 2014. Design of Polarization- and Incident Angle-Independent Perfect Metamaterial Absorber with Interference Theory, Journal of Electronic Materials, 43, 11.
  • 17. Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Sabah, C., 2014. Polarization Angle Independent Perfect Metamaterial Absorbers for Solar Cell Applications in the Microwave, Infrared, and Visible Regime, Progress in Electromagnetics Research, 144, 93-101.
  • 18. Cummer, S.A., Ioan Popa, B., Schurig, D., Smith, D.R., 2006. Full-wave Simulations of Electromagnetic Cloaking Structures, Physical Review E, 74(3), 036621.
  • 19. Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M., 2007. Optical Cloaking with Metamaterials, Nature Photonics, 1(4), 224-227.
  • 20. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R., 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980.
  • 21. Karaaslan, M., Bakır, M., 2014. Chiral Metamaterial Based Multifunctional Sensor Applications, Progress in Electromagnetics Research, 149, 55-67.
  • 22. Abdouni, W., Tarot, A.C., Sharaiha, A., 2008. Realisation of a Compact Patch Antenna over an Artificial Magneto-dielectric Substrate, ACES 2008 the 24th Annual Review of Progress Applied Computational Electromagnetics.
  • 23. Tang, M.C., Xiao, S., Wang, D., Xiong, J., Chen, K., Wang, B., 2011. Negative Index of Reflection in Planar Metamaterial Composed of Single Split-ring Resonators, Applied Computational Electromagnetics Society Journal 26(3), 250-258.
  • 24. Fazi, C., Shi, S., Mirza, I., Prather, D., 2007. Split Ring Resonator Slab Modelling for a Metamaterial Loaded Loop Antenna, 23rd Annual Review of Progress in Applied Computational Electromagnetics (ACES), Verona, Italy, 117-122.
  • 25. Liu, J.C., Shao, W., Wang, B.Z., 2011. A Dualband Metamaterial Design Using Double SRR Structures, Applied Computational Electromagnetics Society Journal, 26(6), 459-463.
  • 26. Szabo, Z., Park, G., Hedge, R., Er-Ping, Li., 2010. A Unique Extraction of Metamaterial Parameters Based on Kramer’s–Kronig Relationship, IEEE Transactions on Microwave Theory and Techniques 58(10), 2646-2653.
  • 27. Hwang, R.B., Peng, S.T., 2003. Surface-wave Suppression of Resonance-type Periodic Structures, IEEE Transactions on Antennas and Propagation, 51(6), 1221-1229.
  • 28. Lo, Y.T., Solomon, D., Richards, W., 1979. Theory and Experiment on Microstrip Antennas, IEEE Transactions on Antennas and Propagation 27(2), 137-145.
  • 29. Colburn, J.S., Rahmat-Samii, Y., 1999. Patch Antennas on Externally Perforated High Dielectric Constant Substrates, IEEE Transactions on Antennas and Propagation 47(12), 1785-1794.
  • 30. Ikonen, P., Maslovski, S., Tretyakov, S., 2005. PIFA Loaded with Artificial Magnetic Material: Practical Example for Two Utilization Strategies, Microwave and Optical Technology Letters 46(3) 205-209.
  • 31. Yeap, S.B., Chen, Z.N., 2010. Microstrip Patch Antennas with Enhanced Gain by Partial Substrate Removal, IEEE Transactions on Antennas and Propagation 58(9), 2811-2816.
  • 32. Mosallaei, H., Sarabandi, K., 2004. Antenna Miniaturization and Bandwidth Enhancement Using a Reactive Impedance Substrate, IEEE Transactions on Antennas and Propagation 52.9: 2403-2414.
  • 33. Dincer, F., Karaaslan, M., Akgol, O., Unal, E., Sabah, C., 2015. Dynamic and Tuneable Chiral Metamaterials with Wideband Constant Chirality Over a Certain Frequency Band, Optik-International Journal for Light and Electron Optics, 126(24), 4808-4812.
  • 34. Weir, W.B., 1974. Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies, Proceedings of the IEEE, 62(1), 33-36.
  • 35. Nicolson, A.M., Ross, G.F., 1970. Measurement of the Intrinsic Properties of Materials by Time-domain Techniques, IEEE Transactions on Instrumentation and Measurement, 19(4), 377-382.
  • 36. Dincer, F., Karaaslan, M., Unal, E., Akgol, O., Sabah, C., 2014. Chiral Metamaterial Structures with Strong Optical Activity and Their Applications, Optical Engineering, 53(10), 107101-107101.

Bakışımsız Metamalzeme Kaplı Mikroşerit Anten Yapıları

Year 2018, Volume: 33 Issue: 3, 245 - 254, 30.09.2018
https://doi.org/10.21605/cukurovaummfd.504766

Abstract

Bu çalışmada bakışımsız metamalzeme kaplı mikroşerit antenlerin kazanç karakteristiği ortaya koyulmuştur. Bakışımsız metamalzeme kaplı mikroşerit antenin kazancını belirlemek için, metamalzeme kaplı yüzeyin bakışımısız mtamalzemeli ve bakışımsız metamalzemesiz sonuçları grafiğe dökülmüş ve bunlar yorumlanarak birbiriyle karşılaştırılmıştır. Simulasyon sonuçları bakışımsız metamalzeme kaplı antenin kazancının ve yayılım patentinin arttığını ortaya göstermiştir. 

References

  • 1. Waterhouse, R., 2003. Micro Strip Patch Antennas, A Designer's Guide, Kluwer Academic Publishers, Boston, MA.
  • 2. Jafargholi, A., Manouchehr K., 2012. Dipole Antenna Miniaturization Using Single-Cell Metamaterial, Applied Computational Electromagnetics Society Journal, 27, 3.
  • 3. Palandoken, M., Grede, A., Henke, H., 2009. Broadband Microstrip Antenna with Lefthanded Metamaterials, IEEE Transactions on Antennas and Propagation, 57(2), 331-338.
  • 4. Veysi, M., Jafargholi, A., 2012. Directivity and Bandwidth Enhancement of Proximity- Coupled Microstrip Antenna using Metamaterial Cover, Applied Computational Electromagnetics Society Journal, 27, 11.
  • 5. Burokur, S.N., Latrach, M., Toutain, S., 2005. Theoretical Investigation of a Circular Patch Antenna in the Presence of a Left-handed Medium, IEEE Antennas and Wireless Propagation Letters, 4:183-186.
  • 6. Tao, L., Xiang-Yu, C., Yun, G., Qun Yang Wen‐Qiang, Li., 2011. Design of Miniaturized Broadband and High Gain Metamaterial Patch Antenna, Microwave and Optical Technology Letters, 53.12: 2858-2861.
  • 7. Veselago, V.G., 1968. The Electrodynamics of Substances with Simultaneously Negative Values of and 􀟤, Soviet Physics Uspekhi, 10(4), 509.
  • 8. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., 1999. Magnetism from Conductors and Enhanced Nonlinear Phenomena, IEEE Transactions on Microwave Theory and Techniques, 47.11: 2075-2084.
  • 9. Shelby, R.A., Smith, D.R., Schultz, S., 2001. Experimental Verification of a Negative Index of Refraction, Science, 292(5514), 77-79.
  • 10. Smith, D.R., Pendry, J.B., 2004. Wiltshire, Mike CK. Metamaterials and Negative Refractive Index, Science, 305(5685), 788-792.
  • 11. Unal, E., Dincer, F., Tetik, E., Karaaslan, M., Bakir, M., Sabah, C., 2015. Tunable Perfect Metamaterial Absorber Design Using the Golden Ratio and Energy Harvesting and Sensor Applications, Journal of Materials Science: Materials in Electronics, 26(12), 9735-9740.
  • 12. Pendry, J.B., 2000. Negative Refraction Makes a Perfect Lens, Physical Review Letters, 85(18), 3966.
  • 13. Garcia, N., Nieto, V.M., 2002. Left-handed Materials do not Make a Perfect Lens, Physical Review Letters, 88(20), 207403.
  • 14. Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Demirel, E., Sabah, C., 2014. Perfect Metamaterial Absorber with Polarization and Incident Angle Independencies Based on Ring and Cross-wire Resonators for Shielding and a Sensor Application, Optics Communications, 322: 137-142.
  • 15. Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Demirel, E., Sabah, C., 2014. Polarization and Angle Independent Perfect Metamaterial Absorber Based on Discontinuous Cross-wirestrips, Journal of Electromagnetic Waves and Applications, 28(6), 741-751.
  • 16. Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Sabah, C., 2014. Design of Polarization- and Incident Angle-Independent Perfect Metamaterial Absorber with Interference Theory, Journal of Electronic Materials, 43, 11.
  • 17. Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Sabah, C., 2014. Polarization Angle Independent Perfect Metamaterial Absorbers for Solar Cell Applications in the Microwave, Infrared, and Visible Regime, Progress in Electromagnetics Research, 144, 93-101.
  • 18. Cummer, S.A., Ioan Popa, B., Schurig, D., Smith, D.R., 2006. Full-wave Simulations of Electromagnetic Cloaking Structures, Physical Review E, 74(3), 036621.
  • 19. Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M., 2007. Optical Cloaking with Metamaterials, Nature Photonics, 1(4), 224-227.
  • 20. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R., 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980.
  • 21. Karaaslan, M., Bakır, M., 2014. Chiral Metamaterial Based Multifunctional Sensor Applications, Progress in Electromagnetics Research, 149, 55-67.
  • 22. Abdouni, W., Tarot, A.C., Sharaiha, A., 2008. Realisation of a Compact Patch Antenna over an Artificial Magneto-dielectric Substrate, ACES 2008 the 24th Annual Review of Progress Applied Computational Electromagnetics.
  • 23. Tang, M.C., Xiao, S., Wang, D., Xiong, J., Chen, K., Wang, B., 2011. Negative Index of Reflection in Planar Metamaterial Composed of Single Split-ring Resonators, Applied Computational Electromagnetics Society Journal 26(3), 250-258.
  • 24. Fazi, C., Shi, S., Mirza, I., Prather, D., 2007. Split Ring Resonator Slab Modelling for a Metamaterial Loaded Loop Antenna, 23rd Annual Review of Progress in Applied Computational Electromagnetics (ACES), Verona, Italy, 117-122.
  • 25. Liu, J.C., Shao, W., Wang, B.Z., 2011. A Dualband Metamaterial Design Using Double SRR Structures, Applied Computational Electromagnetics Society Journal, 26(6), 459-463.
  • 26. Szabo, Z., Park, G., Hedge, R., Er-Ping, Li., 2010. A Unique Extraction of Metamaterial Parameters Based on Kramer’s–Kronig Relationship, IEEE Transactions on Microwave Theory and Techniques 58(10), 2646-2653.
  • 27. Hwang, R.B., Peng, S.T., 2003. Surface-wave Suppression of Resonance-type Periodic Structures, IEEE Transactions on Antennas and Propagation, 51(6), 1221-1229.
  • 28. Lo, Y.T., Solomon, D., Richards, W., 1979. Theory and Experiment on Microstrip Antennas, IEEE Transactions on Antennas and Propagation 27(2), 137-145.
  • 29. Colburn, J.S., Rahmat-Samii, Y., 1999. Patch Antennas on Externally Perforated High Dielectric Constant Substrates, IEEE Transactions on Antennas and Propagation 47(12), 1785-1794.
  • 30. Ikonen, P., Maslovski, S., Tretyakov, S., 2005. PIFA Loaded with Artificial Magnetic Material: Practical Example for Two Utilization Strategies, Microwave and Optical Technology Letters 46(3) 205-209.
  • 31. Yeap, S.B., Chen, Z.N., 2010. Microstrip Patch Antennas with Enhanced Gain by Partial Substrate Removal, IEEE Transactions on Antennas and Propagation 58(9), 2811-2816.
  • 32. Mosallaei, H., Sarabandi, K., 2004. Antenna Miniaturization and Bandwidth Enhancement Using a Reactive Impedance Substrate, IEEE Transactions on Antennas and Propagation 52.9: 2403-2414.
  • 33. Dincer, F., Karaaslan, M., Akgol, O., Unal, E., Sabah, C., 2015. Dynamic and Tuneable Chiral Metamaterials with Wideband Constant Chirality Over a Certain Frequency Band, Optik-International Journal for Light and Electron Optics, 126(24), 4808-4812.
  • 34. Weir, W.B., 1974. Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies, Proceedings of the IEEE, 62(1), 33-36.
  • 35. Nicolson, A.M., Ross, G.F., 1970. Measurement of the Intrinsic Properties of Materials by Time-domain Techniques, IEEE Transactions on Instrumentation and Measurement, 19(4), 377-382.
  • 36. Dincer, F., Karaaslan, M., Unal, E., Akgol, O., Sabah, C., 2014. Chiral Metamaterial Structures with Strong Optical Activity and Their Applications, Optical Engineering, 53(10), 107101-107101.
There are 36 citations in total.

Details

Primary Language English
Subjects Architecture, Engineering
Journal Section Articles
Authors

Mehmet Bağmancı This is me

Muharrem Karaaslan This is me

Emin Unal This is me

Faruk Karadag

Publication Date September 30, 2018
Published in Issue Year 2018 Volume: 33 Issue: 3

Cite

APA Bağmancı, M., Karaaslan, M., Unal, E., Karadag, F. (2018). Microstrip Patch Antennas Covered with Chiral Metamaterial Structures. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(3), 245-254. https://doi.org/10.21605/cukurovaummfd.504766
AMA Bağmancı M, Karaaslan M, Unal E, Karadag F. Microstrip Patch Antennas Covered with Chiral Metamaterial Structures. cukurovaummfd. September 2018;33(3):245-254. doi:10.21605/cukurovaummfd.504766
Chicago Bağmancı, Mehmet, Muharrem Karaaslan, Emin Unal, and Faruk Karadag. “Microstrip Patch Antennas Covered With Chiral Metamaterial Structures”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33, no. 3 (September 2018): 245-54. https://doi.org/10.21605/cukurovaummfd.504766.
EndNote Bağmancı M, Karaaslan M, Unal E, Karadag F (September 1, 2018) Microstrip Patch Antennas Covered with Chiral Metamaterial Structures. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33 3 245–254.
IEEE M. Bağmancı, M. Karaaslan, E. Unal, and F. Karadag, “Microstrip Patch Antennas Covered with Chiral Metamaterial Structures”, cukurovaummfd, vol. 33, no. 3, pp. 245–254, 2018, doi: 10.21605/cukurovaummfd.504766.
ISNAD Bağmancı, Mehmet et al. “Microstrip Patch Antennas Covered With Chiral Metamaterial Structures”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33/3 (September 2018), 245-254. https://doi.org/10.21605/cukurovaummfd.504766.
JAMA Bağmancı M, Karaaslan M, Unal E, Karadag F. Microstrip Patch Antennas Covered with Chiral Metamaterial Structures. cukurovaummfd. 2018;33:245–254.
MLA Bağmancı, Mehmet et al. “Microstrip Patch Antennas Covered With Chiral Metamaterial Structures”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 33, no. 3, 2018, pp. 245-54, doi:10.21605/cukurovaummfd.504766.
Vancouver Bağmancı M, Karaaslan M, Unal E, Karadag F. Microstrip Patch Antennas Covered with Chiral Metamaterial Structures. cukurovaummfd. 2018;33(3):245-54.