Research Article
BibTex RIS Cite

Synthesis Gas Combustion and Environmental Pollutants

Year 2019, Volume: 34 Issue: 1, 129 - 138, 31.03.2019
https://doi.org/10.21605/cukurovaummfd.601341

Abstract

In this study, the mass fractions of NOx, SOx and CO produced during combustion of synthesis gases obtained from coal, waste tyre and olive cake are computationally investigated under different operating conditions. The flames are laminar and stoichiometric premixed. The chemical kinetic mechanism used in the study consists of 74 reactions and 33 chemical species. Maximum NOx for synthesis gases of coal, waste tyre and olive cake are found at equivalence ratios of 0.915, 0.875 and 0.98, respectively.  NOx, SOx and CO increase with increasing reactant inlet temperature. Ascending inlet total mass amount does not cause any change in the mass fractions of NOx, SOx and CO. Rising humidity ratio of the burning air reduces the mass fractions of NOx, SOx and CO.  Increment in the inlet pressure of reactants decreases the mass fractions of NOx and CO.

References

  • 1. Lee, H.C., Jiang, L.Y, Mohamad, A.A., 2014. A Review on the Laminar Flame Speed and Ignition Delay Time of Syngas Mixtures, International Journal of Hydrogen Energy, 39, 1105-1121.
  • 2. Huynh, C.V., Kong, S.C., 2013. Combustion and NOx Emissions of Biomass-derived Syngas under Various Gasification Conditions Utilizing Oxygen-enriched-air and Steam, Fuel, 107, 455-464. 3. Variyenli, H.İ., Menlik, T., Özkaya, M.G., 2011. Isı Enerjisi Destekli Bir Kompresörün Buhar Sıkıştırmalı Soğutma Sistemindeki Performansının Deneysel İncelenmesi, Gazi Üniv. Müh. Mim. Fak. Der., 26, 1-8.
  • 4. Caro, S., Torres, D., Toledo, M., 2015. Syngas Production from Residual Biomass of Forestry and Cereal Plantations Using Hybrid Filtration Combustion, International Journal of Hydrogen Energy, 40, 2568-2577.
  • 5. Cornelissen, R., Tober, E., Kok, J., Van De Meer, T., 2006. Generation of Synthesis Gas by Partial Oxidation of Natural Gas in a Gas Turbine, Energy, 31, 3199-3207.
  • 6. Ouimette, P., Seers, P., 2009. NOx Emission Characteristics of Partially Premixed Laminar Flames of H2/CO/CO2 Mixtures, International Journal of Hydrogen Energy, 34, 9603-9610.
  • 7. Daniel, E.G., Sibendu, S., Suresh, K.A., 2006. NOx Emission Characteristics of Counterflow Syngas Diffusion Flames with Airstream Dilution, Fuel, 85, 1729-1742.
  • 8. Azimov, U., Okuno, M., Tsuboi, K., Kawahara, N., Tomita, E., 2011. Multidimensional CFD Simulation of Syngas Combustion in A Micro-pilot-ignited Dual-fuel Engine Using a Constructed Chemical Kinetics Mechanism, International Journal of Hydrogen Energy, 36, 13793-13807.
  • 9. Kayahan, U., 2008. Design and Operation of A Laboratory Scale Fluized Bed Gasification System, Ms Thesis, Marmara University, Institute for Graduate Studies in Pure and Applied Sciences, İstanbul, 85.
  • 10. Van Dyk, J.C., Keyser, M.J., Coertzen, M., 2006. Syngas Production from South African Coal Sources Using Sasol–Lurgi Gasifiers, International Journal of Coal Geology, 65, 243-253.
  • 11. Mendioroz, S., Martin-Rojo, A. B., Rivera, F., Martin, J.C., Bahamonde, A., Yates, M., 2006. Selective Catalytic Reduction of NOx by Methane in Excess Oxygen over Rh Based Aluminum Pillared Clays, Applied Catalysis B: Environmental, 64, 161-170.
  • 12. Özden, Ö., Koçaker, S., Döğeroğlu, T., 2008. Eskişehir’de Azot Dioksit (NO2) ve Kükürt Dioksitin (SO2) Kış Dönemi İç ve Dış Ortam Seviyelerinin Pasif Örnekleme Yöntemiyle Ölçümü, Hava Kirliliği ve Kontrolü Ulusal Sempozyumu, 22-25 Ekim, Hatay, 618-630.
  • 13. Can, A., Eryener, D., 1997. Sanayi ve Şehir Kaynaklı Hava Kirliliği ve Önlemleri, Ekoloji, 24, 6-12.
  • 14. Fischer, M., Jiang, X., 2014. An Assessment of Chemical Kinetics for Bio-syngas Combustion, Fuel, 137, 293-305.
  • 15. Pratt, D.T., Wormeck, J.J., 1976. CREK: A Computer Program for Calculation of Combustion Reaction Equilibrium in Laminar or Turbulent Flow, Report WSU-ME-TEL-76-1, Washington State University.
  • 16. Öztürk, S., Eyriboyun, M., 2010. NOx Formation in Combustıon of Natural Gases Used in Turkey under Different Conditions, J. of Thermal Science and Technology, 30, 95-102.
  • 17. El-Sherif, A.S., 1998. Effects of Natural Gas Composition on the Nitrogen Oxide, Flame Structure and Burning Velocity Under Laminar Premixed Flame Conditions, Fuel, 77, 1539-1547.
  • 18. Eötvös Lorand University, Institute of Chemistry, 2011. http://garfield.chem.elte.hu/ Combustion/combine.htm (Erişim Tarihi: 17.10.2011).
  • 19. Yılmazoğlu, M.Z., 2010. Gazlaştırıcılı Kombine Çevrim Santrallerinde Yanma Öncesi Karbondioksit Tutma, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16, 173-179.
  • 20. Donatelli, A., Iovane, P., Molino, A., 2010. High Energy Syngas Production by Waste Tyres Steam Gasification in A Rotary Kiln Pilot Plant, Experimental and Numerical Investigations, Fuel, 89, 2721–2728.
  • 21. Bing, G., Tian, Y., Zang, S., 2016. The Effects of Humidity on Combustion Characteristics of A Nonpremixed Syngas Flame, International Journal of Hydrogen Energy, 41, 9219-9226.

Sentez Gazı Yanması ve Çevre Kirleticiler

Year 2019, Volume: 34 Issue: 1, 129 - 138, 31.03.2019
https://doi.org/10.21605/cukurovaummfd.601341

Abstract

Bu çalışmada, kömür, atık lastik ve zeytin küspesinden elde edilen sentez gazlarının yanma sonu ürünlerinden NOx, SOx ve CO’in kütle kesitlerindeki değişimler, farklı işletme koşullarında hesaplamalı olarak incelenmiştir. Alevler laminar ve stokiometrik önkarışımlıdır. Çalışmada kullanılan kimyasal kinetik mekanizma 74 reaksiyon ve 33 kimyasal bileşenden meydana gelmektedir. Kömür, atık lastik ve zeytin küspesi sentez gazları için maksimum NOx değerleri sırasıyla 0,915, 0,875 ve 0,98 ekivalans oranlarında elde edilmiştir. NOx, SOx ve CO, reaktan giriş sıcaklığındaki artış ile birlikte artmaktadır. Tepkimeye giren maddelerin toplam kütlesindeki artış NOx, SOx ve CO’in kütle kesitlerinde önemli bir değişime neden olmamaktadır. Yakma havasının nem oranındaki artış NOx, SOx ve CO kütle kesitlerini azaltmaktadır. Reaktanların giriş basıncındaki artış NOx ve CO kütle kesitlerini düşürmektedir.

References

  • 1. Lee, H.C., Jiang, L.Y, Mohamad, A.A., 2014. A Review on the Laminar Flame Speed and Ignition Delay Time of Syngas Mixtures, International Journal of Hydrogen Energy, 39, 1105-1121.
  • 2. Huynh, C.V., Kong, S.C., 2013. Combustion and NOx Emissions of Biomass-derived Syngas under Various Gasification Conditions Utilizing Oxygen-enriched-air and Steam, Fuel, 107, 455-464. 3. Variyenli, H.İ., Menlik, T., Özkaya, M.G., 2011. Isı Enerjisi Destekli Bir Kompresörün Buhar Sıkıştırmalı Soğutma Sistemindeki Performansının Deneysel İncelenmesi, Gazi Üniv. Müh. Mim. Fak. Der., 26, 1-8.
  • 4. Caro, S., Torres, D., Toledo, M., 2015. Syngas Production from Residual Biomass of Forestry and Cereal Plantations Using Hybrid Filtration Combustion, International Journal of Hydrogen Energy, 40, 2568-2577.
  • 5. Cornelissen, R., Tober, E., Kok, J., Van De Meer, T., 2006. Generation of Synthesis Gas by Partial Oxidation of Natural Gas in a Gas Turbine, Energy, 31, 3199-3207.
  • 6. Ouimette, P., Seers, P., 2009. NOx Emission Characteristics of Partially Premixed Laminar Flames of H2/CO/CO2 Mixtures, International Journal of Hydrogen Energy, 34, 9603-9610.
  • 7. Daniel, E.G., Sibendu, S., Suresh, K.A., 2006. NOx Emission Characteristics of Counterflow Syngas Diffusion Flames with Airstream Dilution, Fuel, 85, 1729-1742.
  • 8. Azimov, U., Okuno, M., Tsuboi, K., Kawahara, N., Tomita, E., 2011. Multidimensional CFD Simulation of Syngas Combustion in A Micro-pilot-ignited Dual-fuel Engine Using a Constructed Chemical Kinetics Mechanism, International Journal of Hydrogen Energy, 36, 13793-13807.
  • 9. Kayahan, U., 2008. Design and Operation of A Laboratory Scale Fluized Bed Gasification System, Ms Thesis, Marmara University, Institute for Graduate Studies in Pure and Applied Sciences, İstanbul, 85.
  • 10. Van Dyk, J.C., Keyser, M.J., Coertzen, M., 2006. Syngas Production from South African Coal Sources Using Sasol–Lurgi Gasifiers, International Journal of Coal Geology, 65, 243-253.
  • 11. Mendioroz, S., Martin-Rojo, A. B., Rivera, F., Martin, J.C., Bahamonde, A., Yates, M., 2006. Selective Catalytic Reduction of NOx by Methane in Excess Oxygen over Rh Based Aluminum Pillared Clays, Applied Catalysis B: Environmental, 64, 161-170.
  • 12. Özden, Ö., Koçaker, S., Döğeroğlu, T., 2008. Eskişehir’de Azot Dioksit (NO2) ve Kükürt Dioksitin (SO2) Kış Dönemi İç ve Dış Ortam Seviyelerinin Pasif Örnekleme Yöntemiyle Ölçümü, Hava Kirliliği ve Kontrolü Ulusal Sempozyumu, 22-25 Ekim, Hatay, 618-630.
  • 13. Can, A., Eryener, D., 1997. Sanayi ve Şehir Kaynaklı Hava Kirliliği ve Önlemleri, Ekoloji, 24, 6-12.
  • 14. Fischer, M., Jiang, X., 2014. An Assessment of Chemical Kinetics for Bio-syngas Combustion, Fuel, 137, 293-305.
  • 15. Pratt, D.T., Wormeck, J.J., 1976. CREK: A Computer Program for Calculation of Combustion Reaction Equilibrium in Laminar or Turbulent Flow, Report WSU-ME-TEL-76-1, Washington State University.
  • 16. Öztürk, S., Eyriboyun, M., 2010. NOx Formation in Combustıon of Natural Gases Used in Turkey under Different Conditions, J. of Thermal Science and Technology, 30, 95-102.
  • 17. El-Sherif, A.S., 1998. Effects of Natural Gas Composition on the Nitrogen Oxide, Flame Structure and Burning Velocity Under Laminar Premixed Flame Conditions, Fuel, 77, 1539-1547.
  • 18. Eötvös Lorand University, Institute of Chemistry, 2011. http://garfield.chem.elte.hu/ Combustion/combine.htm (Erişim Tarihi: 17.10.2011).
  • 19. Yılmazoğlu, M.Z., 2010. Gazlaştırıcılı Kombine Çevrim Santrallerinde Yanma Öncesi Karbondioksit Tutma, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16, 173-179.
  • 20. Donatelli, A., Iovane, P., Molino, A., 2010. High Energy Syngas Production by Waste Tyres Steam Gasification in A Rotary Kiln Pilot Plant, Experimental and Numerical Investigations, Fuel, 89, 2721–2728.
  • 21. Bing, G., Tian, Y., Zang, S., 2016. The Effects of Humidity on Combustion Characteristics of A Nonpremixed Syngas Flame, International Journal of Hydrogen Energy, 41, 9219-9226.
There are 20 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Suat Öztürk

Publication Date March 31, 2019
Published in Issue Year 2019 Volume: 34 Issue: 1

Cite

APA Öztürk, S. (2019). Sentez Gazı Yanması ve Çevre Kirleticiler. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(1), 129-138. https://doi.org/10.21605/cukurovaummfd.601341
AMA Öztürk S. Sentez Gazı Yanması ve Çevre Kirleticiler. cukurovaummfd. March 2019;34(1):129-138. doi:10.21605/cukurovaummfd.601341
Chicago Öztürk, Suat. “Sentez Gazı Yanması Ve Çevre Kirleticiler”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34, no. 1 (March 2019): 129-38. https://doi.org/10.21605/cukurovaummfd.601341.
EndNote Öztürk S (March 1, 2019) Sentez Gazı Yanması ve Çevre Kirleticiler. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 1 129–138.
IEEE S. Öztürk, “Sentez Gazı Yanması ve Çevre Kirleticiler”, cukurovaummfd, vol. 34, no. 1, pp. 129–138, 2019, doi: 10.21605/cukurovaummfd.601341.
ISNAD Öztürk, Suat. “Sentez Gazı Yanması Ve Çevre Kirleticiler”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34/1 (March 2019), 129-138. https://doi.org/10.21605/cukurovaummfd.601341.
JAMA Öztürk S. Sentez Gazı Yanması ve Çevre Kirleticiler. cukurovaummfd. 2019;34:129–138.
MLA Öztürk, Suat. “Sentez Gazı Yanması Ve Çevre Kirleticiler”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 34, no. 1, 2019, pp. 129-38, doi:10.21605/cukurovaummfd.601341.
Vancouver Öztürk S. Sentez Gazı Yanması ve Çevre Kirleticiler. cukurovaummfd. 2019;34(1):129-38.