Research Article
BibTex RIS Cite

Araç Parçalarının MEMS Manyetometre Sensör Çıktısına Etkisi

Year 2020, Volume: 35 Issue: 1, 11 - 18, 31.03.2020
https://doi.org/10.21605/cukurovaummfd.764331

Abstract

Birçok Akıllı Ulaşım Sistemi (AUS) için araçların yön bilgisinin hassasiyeti oldukça önemlidir. GPS- tabanlı konumlandırma ve yön tahmini neredeyse bütün ulaşım sistemlerinde yaygın olarak kullanılmaktadır. Fakat şehir merkezlerindeki çevresel etmenler nedeniyle GPS sinyali algılamasında tutarsızlıklar meydana gelmektedir. Mobil cihazlarda bulunan jiroskop, ivme ölçer, manyetometre gibi Mikroelektromekaniksel Sistem (MEMS) sensörleri, taşıt dinamiği ölçümlerinde oldukça güçlü bir potansiyele sahip olmak ile birlikte taşıtlarda yön tahmini ile ilgili çalışmalar yapabilmek için de oldukça elverişlidir. Akıllı mobil cihazlardaki manyetometre sensörleri, hassas yön tahmini yapabilmek için kullanışlı duruma getirilebilirler. Fakat manyetometre sensörü tarafından ölçülen manyetik alan verisi, taşıtın ferromanyetik parçaları nedeni ile ciddi şekilde deforme olmaktadır. Bu çalışmada, hata parametreleri saptanarak hassas olarak taşıt yön tahmininin nümerik olarak elde edilebileceği ortaya konmuştur. Hata parametreleri matematiksel bir modele dönüştürülerek etki eden hatalar ham sensör verisinden elimine edilmiştir. Simülasyon sonuçlarına göre modelin ürettiği maksimum hata %3.4’tür.

References

  • 1. Abeygunawardana, T.D., 2014. Smart Data Collection Using Mobile Devices to Improve Transportation Systems, Dissertation, University of Nevada.
  • 2. Kim, Y.C., Yun, K.H., Min, K.D., 2014. Automatic Guidance Control of An Articulated All-wheel-streed Vehicle, Vehicle System Dynamics, 52, 456-474.
  • 3. Jackson, J.D., 1975. Introduction, Boundary Value Problems, Multipoles, Magnetostatics, Maxwell’s Equations, 1st ed. NY, John Wiley & Sons, Inc., ch. 1-6.
  • 4. Moron, C., Cabrera, C., Moron, A., Garcia, A., Gonzales, M., 2015. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review, Sensors, 15, 28340-28366.
  • 5. Kahler, G.R., Torre, E.D., Vajda, F., 1992. Static Magnetic Field Deformation by a Ferromagnetic Body, IEEE Transactions on Magnetics, 28, 2274-2276.
  • 6. Egziabher, D.G., Elkaim, G.H., Powell, J.D., Parkinson, B.W., 2006. Calibration of Strapdown Magnetometers in Magnetic Field Domain, Journal of Aerospace Engineering, 19, 87-102.
  • 7. Foster, C.C., Elkaim, G.H., 2008. Extension of a Two-Step Calibration Methodology to Include Nonorthogonal Sensor Axes, IEEE Transactions on Aerospace and Electronic Systems, 44(3), 1070-1078.
  • 8. Renaudin, V., Afzal, M.H., Lachapelle, G., 2010. Complete Triaxis Magnetometer Calibration in the Magnetic Domain, Journal of Sensors, 21, 1-10.
  • 9. Solzbach, U., Wollschlager, H., Zeiher, A., Just, H., 1988. Optical Distortion Due to Geomagnetism in Quantitative Angiography, Proceedings of Computers in Cardiology, Washington, DC.
  • 10. Macmillan, S., Ryeroft, M.J., 2010. The Earth’s Magnetic Field, National Env. Res. Council, Online Encyclopedia of Aerospace Engineering, John Wiley & Sons, Inc.
  • 11. Kittel, C., 2004. “Ferromagnetism and Anti- ferromagnetism” An Introduction to Solid State Physics, 8th ed. NY, John Wiley & Sons, Inc.
  • 12. Low, L., Riddle, A., 2012. Simulation of the Effects of Vehicle Bodyshell on Low Frequency Magnetic Fields due to High Voltage Power Cables in Electric Vehicles, IEEE International Symposium on Electromagnetic Compatibility, Rome, Italy.
  • 13. Wolff, J., Heuer, T., Gao, H., Weinmann, M., Voit, S., Hartmann, U., 2006. Parking Monitor System Based on Magnetic Field Sensors, Proceedings of the IEEE Intelligent Transportation Systems Conference, Toronto, Canada.
  • 14. Markevicius, V., Navikas, D., Zilys, M., Andriukaitis, D., Valinevicius, A., Cepenas, M., 2016. Dynamic vehicle detection via the use of magnetic field sensors, Sensors, 16, 1-9.

Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output

Year 2020, Volume: 35 Issue: 1, 11 - 18, 31.03.2020
https://doi.org/10.21605/cukurovaummfd.764331

Abstract

Precise vehicle heading information is of great importance for many Intelligent Transportation Systems (ITS) applications. GPS-based localization and heading estimation is widely used in almost every transportation systems. However, dense urban environment causes inconsistency in the reception of the GPS signals. Given the diverse sensors within mobile devices, i.e., Microelectromechanical System (MEMS) sensors such as gyroscope, accelerometer, magnetometer etc., they have a strong potential for sensing vehicle dynamics and can promote a broad range of applications associated with heading estimation. A magnetometer sensor of a smart mobile device can be utilized to obtain accurate vehicle heading estimation. However, ferromagnetic components of a vehicle significantly deforms the magnetic field measured by magnetometer sensor. In this study, it is demonstrated that an accurate vehicle heading estimation can numerically be achieved through identifying error parameters. These parameters were then transformed into a mathematical model and contributing errors were eliminated from raw sensor output.
Simulation results show that the model produces a maximum error of 3.4%.

References

  • 1. Abeygunawardana, T.D., 2014. Smart Data Collection Using Mobile Devices to Improve Transportation Systems, Dissertation, University of Nevada.
  • 2. Kim, Y.C., Yun, K.H., Min, K.D., 2014. Automatic Guidance Control of An Articulated All-wheel-streed Vehicle, Vehicle System Dynamics, 52, 456-474.
  • 3. Jackson, J.D., 1975. Introduction, Boundary Value Problems, Multipoles, Magnetostatics, Maxwell’s Equations, 1st ed. NY, John Wiley & Sons, Inc., ch. 1-6.
  • 4. Moron, C., Cabrera, C., Moron, A., Garcia, A., Gonzales, M., 2015. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review, Sensors, 15, 28340-28366.
  • 5. Kahler, G.R., Torre, E.D., Vajda, F., 1992. Static Magnetic Field Deformation by a Ferromagnetic Body, IEEE Transactions on Magnetics, 28, 2274-2276.
  • 6. Egziabher, D.G., Elkaim, G.H., Powell, J.D., Parkinson, B.W., 2006. Calibration of Strapdown Magnetometers in Magnetic Field Domain, Journal of Aerospace Engineering, 19, 87-102.
  • 7. Foster, C.C., Elkaim, G.H., 2008. Extension of a Two-Step Calibration Methodology to Include Nonorthogonal Sensor Axes, IEEE Transactions on Aerospace and Electronic Systems, 44(3), 1070-1078.
  • 8. Renaudin, V., Afzal, M.H., Lachapelle, G., 2010. Complete Triaxis Magnetometer Calibration in the Magnetic Domain, Journal of Sensors, 21, 1-10.
  • 9. Solzbach, U., Wollschlager, H., Zeiher, A., Just, H., 1988. Optical Distortion Due to Geomagnetism in Quantitative Angiography, Proceedings of Computers in Cardiology, Washington, DC.
  • 10. Macmillan, S., Ryeroft, M.J., 2010. The Earth’s Magnetic Field, National Env. Res. Council, Online Encyclopedia of Aerospace Engineering, John Wiley & Sons, Inc.
  • 11. Kittel, C., 2004. “Ferromagnetism and Anti- ferromagnetism” An Introduction to Solid State Physics, 8th ed. NY, John Wiley & Sons, Inc.
  • 12. Low, L., Riddle, A., 2012. Simulation of the Effects of Vehicle Bodyshell on Low Frequency Magnetic Fields due to High Voltage Power Cables in Electric Vehicles, IEEE International Symposium on Electromagnetic Compatibility, Rome, Italy.
  • 13. Wolff, J., Heuer, T., Gao, H., Weinmann, M., Voit, S., Hartmann, U., 2006. Parking Monitor System Based on Magnetic Field Sensors, Proceedings of the IEEE Intelligent Transportation Systems Conference, Toronto, Canada.
  • 14. Markevicius, V., Navikas, D., Zilys, M., Andriukaitis, D., Valinevicius, A., Cepenas, M., 2016. Dynamic vehicle detection via the use of magnetic field sensors, Sensors, 16, 1-9.
There are 14 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Murat Bakırcı This is me

Publication Date March 31, 2020
Published in Issue Year 2020 Volume: 35 Issue: 1

Cite

APA Bakırcı, M. (2020). Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(1), 11-18. https://doi.org/10.21605/cukurovaummfd.764331
AMA Bakırcı M. Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output. cukurovaummfd. March 2020;35(1):11-18. doi:10.21605/cukurovaummfd.764331
Chicago Bakırcı, Murat. “Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, no. 1 (March 2020): 11-18. https://doi.org/10.21605/cukurovaummfd.764331.
EndNote Bakırcı M (March 1, 2020) Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 1 11–18.
IEEE M. Bakırcı, “Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output”, cukurovaummfd, vol. 35, no. 1, pp. 11–18, 2020, doi: 10.21605/cukurovaummfd.764331.
ISNAD Bakırcı, Murat. “Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/1 (March 2020), 11-18. https://doi.org/10.21605/cukurovaummfd.764331.
JAMA Bakırcı M. Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output. cukurovaummfd. 2020;35:11–18.
MLA Bakırcı, Murat. “Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35, no. 1, 2020, pp. 11-18, doi:10.21605/cukurovaummfd.764331.
Vancouver Bakırcı M. Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output. cukurovaummfd. 2020;35(1):11-8.