Research Article
BibTex RIS Cite

Tasnif Edilmiş İnşaat Yıkıntı Atıklarından Elde Edilen Harman Tuğlası, Delikli Tuğla ve Çatı Kiremitinden Oluşan İkili Karışımların Geopolimer Hamur Üretiminde Değerlendirilmesi

Year 2020, Volume: 35 Issue: 1, 79 - 90, 31.03.2020
https://doi.org/10.21605/cukurovaummfd.764629

Abstract

Çimento endüstrisinin yüksek CO2 salımı, enerji ve doğal kaynak tüketimi gibi sebeplerden dolayı araştırmacılar alternatif bağlayıcı malzeme arayışına girmişlerdir. Alkali-aktive malzemeler ve geopolimer bu alternatif bağlayıcı malzemeler içerisinde son zamanlarda oldukça popülerdir. Söz konusu çalışma kapsamında tasnif edilmiş inşaat yıkıntı atıkları (İYA) 10 ve 15 M NaOH çözeltileri ile aktive edilerek geopolimer hamurlar üretilmiştir. Aktive edilen inşaat yıkıntı atıkları çatı kiremiti, delikli ve harman tuğlanın ayrı ayrı %75 ya da %25 oranlarında kullanıldığı ikili karışımlardır. İkili karışımlarla elde edilecek iyi sonuçlar hem üçlü karışımların kullanımını cesaretlendirecek hem de yıkıntı atıklarının, içerisindeki malzeme oranlarına göre optimum aktivatör ve kür koşullarıyla, tasnif edilmesine gerek kalmadan karışık şekilde kullanımının önünü açacaktır. Hamurların 24, 48 ve 72 saat süreyle 95, 105, 115 ve 125 oC sıcaklıklarda kür edildiği bu çalışmada, en yüksek basınç dayanım değeri 83,1 MPa değeriyle 72 saat 115 oC’de kür edilen %75 delikli tuğla ve %25 harman tuğlasından oluşan numuneden elde edilmiştir.

References

  • 1. Worrell, E., Price, L., Martin, N., 2001. Carbon Dioxide Emissions From The Global Cement Industry. Annu. Rev. Energy Environ., 26, 303–29.
  • 2. Pavlu, T., 2018. The Utilization of Recycled Materials for Concrete and Cement Production -A Review. 1st FIB Conference on Sustainable Concrete - Materials and Structures. Malta.
  • 3. Machado, I.L., Moya, H.I., Sanchez, S.B., Martinera, F., 2017. Improvement of the Environmental Energy Sustainability in the Production of Cement Portland with Addition of Thermally Activated Clays. 2nd International Conference on Calcined Clays for Sustainable Concrete. Havana.
  • 4. Dutta, B., Maity, S., 2015. CO2 Abatement During Production of Low Carbon Content Cement. 1st International Conference on Calcined Clays for Sustainable Concrete. Zurich.
  • 5. Dutta, B., Maity, S., 2015. Role of Blended Cement in Reducing Energy Consumption. 1st International Conference on Calcined Clays for Sustainable Concrete. Zurich.
  • 6. Gartner, E., Hirao, H., 2015. A Review of Alternative Approaches to the Reduction of CO2 Emissions Associated with the Manufacture of the Binder Phase in Concrete. Cement and Concrete Research, 78, 126-142.
  • 7. Pacheco-Torgal, F., Jalali, S., 2010. Reusing Ceramic Wastes in Concrete. Construction and Building Materials, 24(5), 832-838.
  • 8. Provis, J.L., van Deventer, J.S., 2009. Geopolymers Structure, Processing, Properties and Industrial Applications. Cambridge: Woodhead Publishing.
  • 9. Wastiels, J., Wu, X., Faignet, S., Patfoort, G., 1993. Mineral Polymer Based on Fly. Proceedings of the 9th International Conference on Solid Waste Management. Philadelphia.
  • 10. Swanepoel, J.C., Strydom, C.A., 2002. Utilisation of Fly Ash in a Geopolymeric Material. 5th International Symposium on Environmental Geochemistry, Cape Town.
  • 11. van Jaarsveld, J.G., van Deventer, J.S., Lukey, G.C., 2002. The Effect of Composition and Temperature on the Properties of Fly Ash- and kaolinite-based Geopolymers. Chemical Engineering Journal, 89(1-3), 63-73.
  • 12. Perera, D.S., Vance, E.R., Cassidy, D.J., Blackford, M.G., Hanna, J.V., Trautman, R.L. 2005. The Effect of Heat on Geopolymers Made Using Fly Ash and Metakaolinite. 106th Annual Meeting of the American-Ceramic- Society, Indianapolis, 165, 87-94.
  • 13. Glukhovsky, V., 1967. Hydration and Structurization of Slag-Alkali Binder. Soil Silicate Articles and Constructions. Kiev.
  • 14. Provis, J.L., Myers, R. J., White, C. E., Rose, V., & van Deventer , J. S. (2012). X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cement and Concrete Research, 42, 855-864.
  • 15. Shi, C., Krivenko, P.V., Roy, D., 2006. Hydration and Microstructure. Alkali- Activated Cements and Concretes (s. 98). içinde New York: Taylor & Francis Group.
  • 16. Provis, J.L., Bernal, S.A., 2014. Geopolymers and Related Alkali-Activated Materials. Annu. Rev. Mater. Res., 44(299-327), 299-327.
  • 17. Cristelo, N., Fernandez-Himenez, A., Vieira, C., Miranda, T., Palomo, A., 2018. Stabilisation of Construction and Demolition Waste with a High Fines Content Using Alkali Activated Fly Ash. Construction and Building Materials, 170, 26-39.
  • 18. Robayo-Salazar, R.A., Rivera, J.F., de Gutierrez, R.M., 2017. Alkali-activated Building Materials Made with Recycled Construction and Demolition Wastes. Construction and Building Materials, 149, 130-138.
  • 19. Robayo, R.A., Mulford, A., Munera, J., de Gutierrez, R.M., 2016. Alternative Cements Based on Alkali-activated Red Clay Brick Waste. Construction and Building Materials, 128, 163-169.
  • 20. Robayo-Salazar, R.A., Mejia-Arcila, J.M., de Gutierrez, R.M., 2017. Eco-efficient Alkali- Activated Cement Based on Red Clay Brick Wastes. Journal of Cleaner Production, 166, 242-252.
  • 21. Reig, L., Tashima, M.M., Borrachero, M.V., Monzo, J., Cheeseman, C.R., Paya, J., 2013. Properties and Microstructure of Alkali- Activated Red Clay Brick Waste. Construction and Building Materials, 43, 98-106.
  • 22. Singh, S., Basavanagowda, S.N., Aswath, M.U., Ranganath, R.V., 2016. Durability of Bricks Coated with Red Mud Based Geopolymer Paste. IOP Conference Series: Materials Science and Engineering.
  • 23. Vafaei, M., Allahverdi, A., 2017. High Strength Geopolymer Binder Based on Waste- glass Powder. Advanced Powder Technology, 28, 215-222.
  • 24. Hajimohammadi, A., Ngo, T., Kashani, A., 2018. Sustainable One-part Geopolymer Foams with Glass Fines Versus Sand as. Construction and Building Materials, 171, 223-231.
  • 25. Vasquez, A., Cardenas, V., Robayo, R.A., de Gutierrez, R.M., 2016. Geopolymer Based on Concrete Demolition Waste. Advanced Powder Technology, 27, 1173-1179.
  • 26. Abdel-Gawwad, H.A., Heikal, E., El- Didamony, H., Hashim, F.S., Mohammed, A.H., 2018. Recycling of Concrete Waste to Produce Ready-mix Alkali Activated Cement. Ceramics International, 44, 7300-7304.
  • 27. Deb, P.S., Nath, P., Sarker, P.K., 2014. The Effects of Ground Granulated Blast-furnace Slag Blending with Fly Ash and Activator Content on the Workability and Strength Properties of Geopolymer Concrete Cured at Ambient Temperature. Materials and Design, 62, 32-39.
  • 28. Hojati, M., Radlinska, A., 2017. Shrinkage and Strength Development of Alkali-activated Fly ash-slag Binary Cements. Construction and Building Materials, 150, 808-816.
  • 29. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S., 2007. Geopolymer Technology: The Current State of the Art. Journal of Materials Science, 42, 2917-2933.
  • 30. Ken, P.W., Ramli, M., Ban, C.C., 2015. An Overview on the Influence of Various Factors on the Properties of Geopolymer Concrete Derived from Industrial By-products. Construction and Building Materials, 77, 370-395.
  • 31. Barbosa, V.F., Mackenzie, K.J., Thaumaturgo, C., 1999. Synthesis and Characterisation of Sodium Polysialate Inorganic Polymer Based on Alumina and Silica. Geopolymer International Conference. Fransa.
  • 32. Abdullah, M.A., Kamarudin, H., Mohammed, H., Khairul Nizar, I., Rafiza, A.R., Zarina, Y., 2011. The Relationship of NaOH Molarity, Na2SiO3/NaOH Ratio, Fly Ash/Alkaline Activator Ratio, and Curing Temperature to the Strength of Fly Ash-Based Geopolymer. Trans Tech Publications, 328-330, 1475-1482.

Assessment of Clay Brick, Hollow Brick and Roof Tile Provided from Assorted Construction and Demolition Waste in Geopolymerization

Year 2020, Volume: 35 Issue: 1, 79 - 90, 31.03.2020
https://doi.org/10.21605/cukurovaummfd.764629

Abstract

Researchers are in search of a new binding material because of the high CO2 emissions and consuming natural resources of cement industry. Alkali-activated materials and geopolymer are very popular recently. In this study, assorted construction and demolition wastes (CDW) were activated with 10 and 15 M NaOH solutions. CDW were used as binary combinations of roof tile, hollow brick and clay brick with percentages of 25% and 75% separately. Thus, both triple mix designs would be possible and not assorted CDW will be able to used through their own optimum activator and curing conditions. Specimens were cured at 95, 105, 115, 125 oC for 24, 48, 72 h and maximum compressive strength result was obtained by alkali-activation of 75% hollow brick and 25% clay brick mix cured at 115 oC for 72 h.

References

  • 1. Worrell, E., Price, L., Martin, N., 2001. Carbon Dioxide Emissions From The Global Cement Industry. Annu. Rev. Energy Environ., 26, 303–29.
  • 2. Pavlu, T., 2018. The Utilization of Recycled Materials for Concrete and Cement Production -A Review. 1st FIB Conference on Sustainable Concrete - Materials and Structures. Malta.
  • 3. Machado, I.L., Moya, H.I., Sanchez, S.B., Martinera, F., 2017. Improvement of the Environmental Energy Sustainability in the Production of Cement Portland with Addition of Thermally Activated Clays. 2nd International Conference on Calcined Clays for Sustainable Concrete. Havana.
  • 4. Dutta, B., Maity, S., 2015. CO2 Abatement During Production of Low Carbon Content Cement. 1st International Conference on Calcined Clays for Sustainable Concrete. Zurich.
  • 5. Dutta, B., Maity, S., 2015. Role of Blended Cement in Reducing Energy Consumption. 1st International Conference on Calcined Clays for Sustainable Concrete. Zurich.
  • 6. Gartner, E., Hirao, H., 2015. A Review of Alternative Approaches to the Reduction of CO2 Emissions Associated with the Manufacture of the Binder Phase in Concrete. Cement and Concrete Research, 78, 126-142.
  • 7. Pacheco-Torgal, F., Jalali, S., 2010. Reusing Ceramic Wastes in Concrete. Construction and Building Materials, 24(5), 832-838.
  • 8. Provis, J.L., van Deventer, J.S., 2009. Geopolymers Structure, Processing, Properties and Industrial Applications. Cambridge: Woodhead Publishing.
  • 9. Wastiels, J., Wu, X., Faignet, S., Patfoort, G., 1993. Mineral Polymer Based on Fly. Proceedings of the 9th International Conference on Solid Waste Management. Philadelphia.
  • 10. Swanepoel, J.C., Strydom, C.A., 2002. Utilisation of Fly Ash in a Geopolymeric Material. 5th International Symposium on Environmental Geochemistry, Cape Town.
  • 11. van Jaarsveld, J.G., van Deventer, J.S., Lukey, G.C., 2002. The Effect of Composition and Temperature on the Properties of Fly Ash- and kaolinite-based Geopolymers. Chemical Engineering Journal, 89(1-3), 63-73.
  • 12. Perera, D.S., Vance, E.R., Cassidy, D.J., Blackford, M.G., Hanna, J.V., Trautman, R.L. 2005. The Effect of Heat on Geopolymers Made Using Fly Ash and Metakaolinite. 106th Annual Meeting of the American-Ceramic- Society, Indianapolis, 165, 87-94.
  • 13. Glukhovsky, V., 1967. Hydration and Structurization of Slag-Alkali Binder. Soil Silicate Articles and Constructions. Kiev.
  • 14. Provis, J.L., Myers, R. J., White, C. E., Rose, V., & van Deventer , J. S. (2012). X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cement and Concrete Research, 42, 855-864.
  • 15. Shi, C., Krivenko, P.V., Roy, D., 2006. Hydration and Microstructure. Alkali- Activated Cements and Concretes (s. 98). içinde New York: Taylor & Francis Group.
  • 16. Provis, J.L., Bernal, S.A., 2014. Geopolymers and Related Alkali-Activated Materials. Annu. Rev. Mater. Res., 44(299-327), 299-327.
  • 17. Cristelo, N., Fernandez-Himenez, A., Vieira, C., Miranda, T., Palomo, A., 2018. Stabilisation of Construction and Demolition Waste with a High Fines Content Using Alkali Activated Fly Ash. Construction and Building Materials, 170, 26-39.
  • 18. Robayo-Salazar, R.A., Rivera, J.F., de Gutierrez, R.M., 2017. Alkali-activated Building Materials Made with Recycled Construction and Demolition Wastes. Construction and Building Materials, 149, 130-138.
  • 19. Robayo, R.A., Mulford, A., Munera, J., de Gutierrez, R.M., 2016. Alternative Cements Based on Alkali-activated Red Clay Brick Waste. Construction and Building Materials, 128, 163-169.
  • 20. Robayo-Salazar, R.A., Mejia-Arcila, J.M., de Gutierrez, R.M., 2017. Eco-efficient Alkali- Activated Cement Based on Red Clay Brick Wastes. Journal of Cleaner Production, 166, 242-252.
  • 21. Reig, L., Tashima, M.M., Borrachero, M.V., Monzo, J., Cheeseman, C.R., Paya, J., 2013. Properties and Microstructure of Alkali- Activated Red Clay Brick Waste. Construction and Building Materials, 43, 98-106.
  • 22. Singh, S., Basavanagowda, S.N., Aswath, M.U., Ranganath, R.V., 2016. Durability of Bricks Coated with Red Mud Based Geopolymer Paste. IOP Conference Series: Materials Science and Engineering.
  • 23. Vafaei, M., Allahverdi, A., 2017. High Strength Geopolymer Binder Based on Waste- glass Powder. Advanced Powder Technology, 28, 215-222.
  • 24. Hajimohammadi, A., Ngo, T., Kashani, A., 2018. Sustainable One-part Geopolymer Foams with Glass Fines Versus Sand as. Construction and Building Materials, 171, 223-231.
  • 25. Vasquez, A., Cardenas, V., Robayo, R.A., de Gutierrez, R.M., 2016. Geopolymer Based on Concrete Demolition Waste. Advanced Powder Technology, 27, 1173-1179.
  • 26. Abdel-Gawwad, H.A., Heikal, E., El- Didamony, H., Hashim, F.S., Mohammed, A.H., 2018. Recycling of Concrete Waste to Produce Ready-mix Alkali Activated Cement. Ceramics International, 44, 7300-7304.
  • 27. Deb, P.S., Nath, P., Sarker, P.K., 2014. The Effects of Ground Granulated Blast-furnace Slag Blending with Fly Ash and Activator Content on the Workability and Strength Properties of Geopolymer Concrete Cured at Ambient Temperature. Materials and Design, 62, 32-39.
  • 28. Hojati, M., Radlinska, A., 2017. Shrinkage and Strength Development of Alkali-activated Fly ash-slag Binary Cements. Construction and Building Materials, 150, 808-816.
  • 29. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S., 2007. Geopolymer Technology: The Current State of the Art. Journal of Materials Science, 42, 2917-2933.
  • 30. Ken, P.W., Ramli, M., Ban, C.C., 2015. An Overview on the Influence of Various Factors on the Properties of Geopolymer Concrete Derived from Industrial By-products. Construction and Building Materials, 77, 370-395.
  • 31. Barbosa, V.F., Mackenzie, K.J., Thaumaturgo, C., 1999. Synthesis and Characterisation of Sodium Polysialate Inorganic Polymer Based on Alumina and Silica. Geopolymer International Conference. Fransa.
  • 32. Abdullah, M.A., Kamarudin, H., Mohammed, H., Khairul Nizar, I., Rafiza, A.R., Zarina, Y., 2011. The Relationship of NaOH Molarity, Na2SiO3/NaOH Ratio, Fly Ash/Alkaline Activator Ratio, and Curing Temperature to the Strength of Fly Ash-Based Geopolymer. Trans Tech Publications, 328-330, 1475-1482.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Raci Bayer This is me

Hüseyin Ulugöl This is me

İlhami Demir This is me

Gürkan Yıldırım This is me

Mustafa Şahmaran This is me

Publication Date March 31, 2020
Published in Issue Year 2020 Volume: 35 Issue: 1

Cite

APA Bayer, R., Ulugöl, H., Demir, İ., Yıldırım, G., et al. (2020). Tasnif Edilmiş İnşaat Yıkıntı Atıklarından Elde Edilen Harman Tuğlası, Delikli Tuğla ve Çatı Kiremitinden Oluşan İkili Karışımların Geopolimer Hamur Üretiminde Değerlendirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(1), 79-90. https://doi.org/10.21605/cukurovaummfd.764629
AMA Bayer R, Ulugöl H, Demir İ, Yıldırım G, Şahmaran M. Tasnif Edilmiş İnşaat Yıkıntı Atıklarından Elde Edilen Harman Tuğlası, Delikli Tuğla ve Çatı Kiremitinden Oluşan İkili Karışımların Geopolimer Hamur Üretiminde Değerlendirilmesi. cukurovaummfd. March 2020;35(1):79-90. doi:10.21605/cukurovaummfd.764629
Chicago Bayer, Raci, Hüseyin Ulugöl, İlhami Demir, Gürkan Yıldırım, and Mustafa Şahmaran. “Tasnif Edilmiş İnşaat Yıkıntı Atıklarından Elde Edilen Harman Tuğlası, Delikli Tuğla Ve Çatı Kiremitinden Oluşan İkili Karışımların Geopolimer Hamur Üretiminde Değerlendirilmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, no. 1 (March 2020): 79-90. https://doi.org/10.21605/cukurovaummfd.764629.
EndNote Bayer R, Ulugöl H, Demir İ, Yıldırım G, Şahmaran M (March 1, 2020) Tasnif Edilmiş İnşaat Yıkıntı Atıklarından Elde Edilen Harman Tuğlası, Delikli Tuğla ve Çatı Kiremitinden Oluşan İkili Karışımların Geopolimer Hamur Üretiminde Değerlendirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 1 79–90.
IEEE R. Bayer, H. Ulugöl, İ. Demir, G. Yıldırım, and M. Şahmaran, “Tasnif Edilmiş İnşaat Yıkıntı Atıklarından Elde Edilen Harman Tuğlası, Delikli Tuğla ve Çatı Kiremitinden Oluşan İkili Karışımların Geopolimer Hamur Üretiminde Değerlendirilmesi”, cukurovaummfd, vol. 35, no. 1, pp. 79–90, 2020, doi: 10.21605/cukurovaummfd.764629.
ISNAD Bayer, Raci et al. “Tasnif Edilmiş İnşaat Yıkıntı Atıklarından Elde Edilen Harman Tuğlası, Delikli Tuğla Ve Çatı Kiremitinden Oluşan İkili Karışımların Geopolimer Hamur Üretiminde Değerlendirilmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/1 (March 2020), 79-90. https://doi.org/10.21605/cukurovaummfd.764629.
JAMA Bayer R, Ulugöl H, Demir İ, Yıldırım G, Şahmaran M. Tasnif Edilmiş İnşaat Yıkıntı Atıklarından Elde Edilen Harman Tuğlası, Delikli Tuğla ve Çatı Kiremitinden Oluşan İkili Karışımların Geopolimer Hamur Üretiminde Değerlendirilmesi. cukurovaummfd. 2020;35:79–90.
MLA Bayer, Raci et al. “Tasnif Edilmiş İnşaat Yıkıntı Atıklarından Elde Edilen Harman Tuğlası, Delikli Tuğla Ve Çatı Kiremitinden Oluşan İkili Karışımların Geopolimer Hamur Üretiminde Değerlendirilmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35, no. 1, 2020, pp. 79-90, doi:10.21605/cukurovaummfd.764629.
Vancouver Bayer R, Ulugöl H, Demir İ, Yıldırım G, Şahmaran M. Tasnif Edilmiş İnşaat Yıkıntı Atıklarından Elde Edilen Harman Tuğlası, Delikli Tuğla ve Çatı Kiremitinden Oluşan İkili Karışımların Geopolimer Hamur Üretiminde Değerlendirilmesi. cukurovaummfd. 2020;35(1):79-90.