Research Article
BibTex RIS Cite

Preparation of Activated Carbon from Natural Starch, its Characterization and Use as an Adsorbent

Year 2020, Volume: 35 Issue: 1, 115 - 126, 31.03.2020
https://doi.org/10.21605/cukurovaummfd.764639

Abstract

In this study, activated carbon was prepared from starch which is a natural substance by chemical activation method. Carbon spheres were obtained by hydrothermal carbonization of starch. Chemical activation process was carried out with NaOH at 800 oC. The effects of chemical activation on the structure and morphology of carbon spheres were evaluated using FT-IR, SEM and BET and zeta potential techniques. As a result of the activation process, the activated carbon having microporous (0,592 cm3/g) with high specific surface area (968 m2/g) was obtained. The potential of using activated carbon as an adsorbent for removal of congo red in water was investigated under several experimental conditions. Langmuir adsorption capacity of active carbon for congo red is 117,65 mg/g. Regeneration studies have shown that the activated carbon can also be used at least six times for the removal of congo red with no change in its adsorption capacity.

References

  • 1. Abbasa, M., Trari, M., 2015. Kinetic, Equilibrium and Thermodynamic Study on the Removal of Congo Red from Aqueous Solutions By Adsorption onto Apricot Stone, Process Saf. Environ. Prot., 98, 424-436.
  • 2. Duman, O., Tunç, S., Polat, T.G., Bozoglan, B.K., 2016. Synthesis of Magnetic Oxidized Multiwalled Carbon Nanotube-K-carrageenan- Fe3O4 Nanocomposite Adsorbent and its Application in Cationic Methylene Blue Dye Adsorption, Carbohydr. Polym., 147, 79-88.
  • 3. Kobya, M., Bayamoglu, M., Eyvaz, M., 2007. Techno-economical Evaluation of Electrocoagulation for the Textile Wastewater Using Different Electrode Connections, J. Hazard. Mater., 148, 311-318.
  • 4. Liu, M., Chen, Q., Lu, K., Huang, W., Lü, Z., Zhou, C., Yu, S., Gao C., 2017. High Efficient Removal of Dyes from Aqueous Solution Through Nanofiltration Using Diethanolamine- Modified Polyamide Thin-film Composite Membrane, Sep. Purif. Technol., 173, 135-143.
  • 5. Bedin, K.C., Martins, A.C., Cazetta, A.L., Pezoti, O., Almeida V.C., 2016. KOH- activated Carbon Prepared from Sucrose Spherical Carbon: Adsorption Equilibrium, Kinetic and Thermodynamic Studies for Methylene Blue Removal, Chem. Eng. J., 286, 476-484.
  • 6. Yin, J., Pei, M., He, Y., Du, Y., Guo, W., Wang, L., 2015. Hydrothermal and Activated Synthesis of Adsorbent Montmorillonite Supported Porous Carbon Nanospheres for Removal of Methylene Blue from Waste Water, RSC Adv., 5, 89839-89847.
  • 7. Tongur, S., Aydın M.E., 2013. Adsorption Kinetics of Chloroform Aqueous Solutioins onto Activated Lignite. Clean-Soil, Air, Water, 41,1-5.
  • 8. Li, M., Wang, S., Luo, W., Xia, H., Gao, Q., Zhou, C., 2015. Facile Synthesis and in Situ Magnetization of Carbon-decorated Lignocellulose Fiber for Highly Efficient Removal of Methylene Blue, J. Chem. Technol. Biotechnol., 90,1124-1134.
  • 9. Xiao, H., Guo, Y., Liang, X., Qi, C., 2010. One-step Synthesis of Novel Biacidic Carbon Via Hydrothermal Carbonization, J. Solid State Chem., 183, 1721-1725.
  • 10. Kazak, O., Eker, Y.R., Bingol, H., Tor, A., 2018. Preparation of Chemically-activated High Surface area Carbon from Waste Vinasse and its Efficiency as Adsorbent Material, J. Mol. Liq., 272, 189-197.
  • 11. Kazak, O., Eker, Y.R., Akın, I., Bingol, H., Tor, A., 2017. Green Preparation of a Novel Red Mud@carbon Composite and its Application for Adsorption of 2,4- dichlorophenoxyacetic Acid from Aqueous Solution, Environ. Sci. Pollut. Res., 24, 23057-23068.
  • 12. Szymański, S., Karpinski, Z., Biniak, S., Swiatkowski, A., 2002. The Effect of the Gradual Thermal Decomposition of Surface Oxygen Species on the Chemical and Catalytic Properties of Oxidized Activated Carbon, Carbon, 40, 2627-2639.
  • 13. Cheng, F., Luo, H., Hu, L., Yu, B., Luo, Z., Fidalgo de Cortalezzi, M., 2016, Sludge Carbonization and Activation: From Hazardous Waste to Functional Materials Forwater Treatment. J. Environ. Chem. Eng., 4, 4574-4586.
  • 14. Lin, Y., Liao, Y., Yu, Z., Fang, S., Lin, Y., Fan, Y., Peng, X., Ma, X., 2016. Co-pyrolysis Kinetics of Sewage Sludge and Oil Shale Thermal Decomposition Using TGA–FTIR analysis, Energy. Conversion. Manage. 118, 345-352.
  • 15. Unur, E., 2013. Functional Nanoporous Carbons from Hydrothermally Treated Biomass for Environmental Purification, Microporous Mesoporous Mater., 168, 92-101.
  • 16. Yan, Q., Street, J., Yu, F. 2015. Synthesis of Carbon-encapsulated Iron Nanoparticles from Wood Derived Sugars by Hydrothermal Carbonization (HTC) and Their Application to Convert Bio-syngas into Liquid Hydrocarbons, Biomass and Bioenergy 83, 85-95.
  • 17. Li, J., Dickon, H.L. Ng, D.H.L, Song, P., Kong, C., Song, Y., Yang, P., 2015. Preparation and Characterization of High- surface-area Activated Carbon Fibers from Silkworm Cocoon Waste for Congo Red Adsorption, Biomass and Bioenergy 75, 189-200.
  • 18. Dong, W., Lu, Y., Wang, W., Zong, L., Zhu, Y., Kang, Y., Wang, A., 2019. A New Route to Fabricate High-efficient Porous Silicate Adsorbents by Simultaneous Inorganic-organic Functionalization of Low-grade Palygorskite Clay for Removal of Congo Red, Microporous Mesoporous Mater., 277, 267-276.
  • 19. Cheng, F., Luo, H., Hu, L., Yu, B., Luo, Z., Fidalgo de Cortalezzi, M., 2016. Sludge Carbonization and Activation: From Hazardous Waste to Functional Materials Forwater Treatment, J. Environ. Chem. Eng., 4, 4574-4586.
  • 20. Chiou, C.T., 2002. Fundamentals of the Adsorption Theory: in Partition and Adsorption of Organic Contaminants in Environmental Systems, John Wiley & Sons, Inc., 39-52.
  • 21. Langmuir, I., 1916. The Constitution and Fundamental Properties of Solids Andliquids, Part I. Solids, J. Am. Chem. Soc., 38, 2221-2295.
  • 22. Freundlich, H.M.F., 1906. Über die Adsorption in Lösungen, Z., Phys. Chem., 385-470.
  • 23. Dubinin, M.M., 1966. Chemistry and Physics of Carbon, 2, 51, Dekker, New York.
  • 24. Dubinin, M.M., Radushkevich, L.V., 1947. The Equation of the Characteristic Curve of Activated Charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331.
  • 25. Li, C., Zhang, L., Xia, H., Peng, J., Zhang, S, Cheng, S., Shu J., 2016. Kinetics and Isotherms Studies for Congo Red Adsorption on Mesoporous Eupatorium Adenophorum-based Activated Carbon Via Microwave-induced H3PO4 Activation, J. Mol. Liq., 224, 737-744.
  • 26. Fu, K.F., Yue, Q.Y., Gao, B.Y., Wang, Y., Li, Q., 2017. Activated Carbon from Tomato Stem By Chemical Activation with FeCl2, Colloids Surf. A Physicochem. Eng. Asp., 529, 842-849.
  • 27. El Messaoudi, N., El Khomri, M., Dbik, A., Bentahar, S., Lacherai, A., Bakiz, B., 2016. Biosorption of Congo Red in a Fixed-bed Column from Aqueous Solution Using Jujube Shell: Experimental and Mathematical Modeling, J. Environ. Chem. Eng., 4(4), 3848-3855.
  • 28. Panda, G.C., Das, S.K., Guha, A.K., 2009. Jute Stick Powder as a Potential Biomass for the Removal of Congo Red and Rhodamine B from their Aqueous Solution, J. Hazard. Mater., 164, 374-379.
  • 29. Wang, Z.W., Han, P., Jiao, Y.B., He, X.T., Dou, C.C., Han, R.P., 2011. Adsorption of Congo Red Using Ethylenediamine Modified Wheat Straw, Desalination Water Treatment, 30, 195-206.
  • 30. Abbas, M., Trari, M., 2015. Kinetic, Equilibrium and Thermodynamic Study on the Removal of Congo Red from Aqueous Solutions By Adsorption onto Apricot Stone, Process Saf. Environ. Prot., 98, 424-436.
  • 31. Alatalo, S.M., Mäkilä, E., Repo, E., Heinonen, M., Salonen, J., Kukk E., 2016. Mesoand Microporous Soft Templated Hydrothermal Carbons for Dye Removal from Water, Green Chem., 18, 1137-1146.
  • 32. Chern, J.M., Wu, C.Y., 2001. Desorption of Dye from Activated Carbon Beds: Effects of Temperature, pH and Alcohol, Water Res., 35, 4159-4165.

Doğal Bir Madde Olan Nişastadan Aktif Karbon Hazırlanması, Karakterizasyonu ve Adsorbent Olarak Kullanımı

Year 2020, Volume: 35 Issue: 1, 115 - 126, 31.03.2020
https://doi.org/10.21605/cukurovaummfd.764639

Abstract

Bu çalışmada, doğal bir madde olan nişastadan kimyasal aktivasyon yöntemi ile aktif karbon hazırlanmıştır. Nişastanın hidrotermal karbonizasyonu sonucu karbon kürecikler elde edilmiştir. Kimyasal aktivasyon işlemi 800 oC’de NaOH ile gerçekleştirilmiştir. Kimyasal aktivasyonun karbon küreciklerin yapısı ve morfolojisi üzerine etkileri FT-IR, SEM ve BET ve zeta potansiyeli teknikleri kullanılarak değerlendirilmiştir. Aktivasyon işlemi sonucunda, yüksek spesifik yüzey alanına (968 m2/g) sahip mikro gözenekli (0,592 cm3/g) aktif karbon elde edilmiştir. Aktif karbonun sudaki kongo kırmızısının giderimin de adsorbent olarak kullanılma potansiyeli farklı deneysel şartlar altında araştırılmıştır. Aktif karbonun kongo kırmızısı için Langmuir adsorpsiyon kapasitesi 117,65 mg/g’dir. Rejenarasyon çalışmaları aktif karbonun adsorpsiyon kapasitesinde bir değişiklik olmadan kongo kırmızısı giderimi için en az altı kez kullanılabilir olduğunu göstermiştir.

References

  • 1. Abbasa, M., Trari, M., 2015. Kinetic, Equilibrium and Thermodynamic Study on the Removal of Congo Red from Aqueous Solutions By Adsorption onto Apricot Stone, Process Saf. Environ. Prot., 98, 424-436.
  • 2. Duman, O., Tunç, S., Polat, T.G., Bozoglan, B.K., 2016. Synthesis of Magnetic Oxidized Multiwalled Carbon Nanotube-K-carrageenan- Fe3O4 Nanocomposite Adsorbent and its Application in Cationic Methylene Blue Dye Adsorption, Carbohydr. Polym., 147, 79-88.
  • 3. Kobya, M., Bayamoglu, M., Eyvaz, M., 2007. Techno-economical Evaluation of Electrocoagulation for the Textile Wastewater Using Different Electrode Connections, J. Hazard. Mater., 148, 311-318.
  • 4. Liu, M., Chen, Q., Lu, K., Huang, W., Lü, Z., Zhou, C., Yu, S., Gao C., 2017. High Efficient Removal of Dyes from Aqueous Solution Through Nanofiltration Using Diethanolamine- Modified Polyamide Thin-film Composite Membrane, Sep. Purif. Technol., 173, 135-143.
  • 5. Bedin, K.C., Martins, A.C., Cazetta, A.L., Pezoti, O., Almeida V.C., 2016. KOH- activated Carbon Prepared from Sucrose Spherical Carbon: Adsorption Equilibrium, Kinetic and Thermodynamic Studies for Methylene Blue Removal, Chem. Eng. J., 286, 476-484.
  • 6. Yin, J., Pei, M., He, Y., Du, Y., Guo, W., Wang, L., 2015. Hydrothermal and Activated Synthesis of Adsorbent Montmorillonite Supported Porous Carbon Nanospheres for Removal of Methylene Blue from Waste Water, RSC Adv., 5, 89839-89847.
  • 7. Tongur, S., Aydın M.E., 2013. Adsorption Kinetics of Chloroform Aqueous Solutioins onto Activated Lignite. Clean-Soil, Air, Water, 41,1-5.
  • 8. Li, M., Wang, S., Luo, W., Xia, H., Gao, Q., Zhou, C., 2015. Facile Synthesis and in Situ Magnetization of Carbon-decorated Lignocellulose Fiber for Highly Efficient Removal of Methylene Blue, J. Chem. Technol. Biotechnol., 90,1124-1134.
  • 9. Xiao, H., Guo, Y., Liang, X., Qi, C., 2010. One-step Synthesis of Novel Biacidic Carbon Via Hydrothermal Carbonization, J. Solid State Chem., 183, 1721-1725.
  • 10. Kazak, O., Eker, Y.R., Bingol, H., Tor, A., 2018. Preparation of Chemically-activated High Surface area Carbon from Waste Vinasse and its Efficiency as Adsorbent Material, J. Mol. Liq., 272, 189-197.
  • 11. Kazak, O., Eker, Y.R., Akın, I., Bingol, H., Tor, A., 2017. Green Preparation of a Novel Red Mud@carbon Composite and its Application for Adsorption of 2,4- dichlorophenoxyacetic Acid from Aqueous Solution, Environ. Sci. Pollut. Res., 24, 23057-23068.
  • 12. Szymański, S., Karpinski, Z., Biniak, S., Swiatkowski, A., 2002. The Effect of the Gradual Thermal Decomposition of Surface Oxygen Species on the Chemical and Catalytic Properties of Oxidized Activated Carbon, Carbon, 40, 2627-2639.
  • 13. Cheng, F., Luo, H., Hu, L., Yu, B., Luo, Z., Fidalgo de Cortalezzi, M., 2016, Sludge Carbonization and Activation: From Hazardous Waste to Functional Materials Forwater Treatment. J. Environ. Chem. Eng., 4, 4574-4586.
  • 14. Lin, Y., Liao, Y., Yu, Z., Fang, S., Lin, Y., Fan, Y., Peng, X., Ma, X., 2016. Co-pyrolysis Kinetics of Sewage Sludge and Oil Shale Thermal Decomposition Using TGA–FTIR analysis, Energy. Conversion. Manage. 118, 345-352.
  • 15. Unur, E., 2013. Functional Nanoporous Carbons from Hydrothermally Treated Biomass for Environmental Purification, Microporous Mesoporous Mater., 168, 92-101.
  • 16. Yan, Q., Street, J., Yu, F. 2015. Synthesis of Carbon-encapsulated Iron Nanoparticles from Wood Derived Sugars by Hydrothermal Carbonization (HTC) and Their Application to Convert Bio-syngas into Liquid Hydrocarbons, Biomass and Bioenergy 83, 85-95.
  • 17. Li, J., Dickon, H.L. Ng, D.H.L, Song, P., Kong, C., Song, Y., Yang, P., 2015. Preparation and Characterization of High- surface-area Activated Carbon Fibers from Silkworm Cocoon Waste for Congo Red Adsorption, Biomass and Bioenergy 75, 189-200.
  • 18. Dong, W., Lu, Y., Wang, W., Zong, L., Zhu, Y., Kang, Y., Wang, A., 2019. A New Route to Fabricate High-efficient Porous Silicate Adsorbents by Simultaneous Inorganic-organic Functionalization of Low-grade Palygorskite Clay for Removal of Congo Red, Microporous Mesoporous Mater., 277, 267-276.
  • 19. Cheng, F., Luo, H., Hu, L., Yu, B., Luo, Z., Fidalgo de Cortalezzi, M., 2016. Sludge Carbonization and Activation: From Hazardous Waste to Functional Materials Forwater Treatment, J. Environ. Chem. Eng., 4, 4574-4586.
  • 20. Chiou, C.T., 2002. Fundamentals of the Adsorption Theory: in Partition and Adsorption of Organic Contaminants in Environmental Systems, John Wiley & Sons, Inc., 39-52.
  • 21. Langmuir, I., 1916. The Constitution and Fundamental Properties of Solids Andliquids, Part I. Solids, J. Am. Chem. Soc., 38, 2221-2295.
  • 22. Freundlich, H.M.F., 1906. Über die Adsorption in Lösungen, Z., Phys. Chem., 385-470.
  • 23. Dubinin, M.M., 1966. Chemistry and Physics of Carbon, 2, 51, Dekker, New York.
  • 24. Dubinin, M.M., Radushkevich, L.V., 1947. The Equation of the Characteristic Curve of Activated Charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331.
  • 25. Li, C., Zhang, L., Xia, H., Peng, J., Zhang, S, Cheng, S., Shu J., 2016. Kinetics and Isotherms Studies for Congo Red Adsorption on Mesoporous Eupatorium Adenophorum-based Activated Carbon Via Microwave-induced H3PO4 Activation, J. Mol. Liq., 224, 737-744.
  • 26. Fu, K.F., Yue, Q.Y., Gao, B.Y., Wang, Y., Li, Q., 2017. Activated Carbon from Tomato Stem By Chemical Activation with FeCl2, Colloids Surf. A Physicochem. Eng. Asp., 529, 842-849.
  • 27. El Messaoudi, N., El Khomri, M., Dbik, A., Bentahar, S., Lacherai, A., Bakiz, B., 2016. Biosorption of Congo Red in a Fixed-bed Column from Aqueous Solution Using Jujube Shell: Experimental and Mathematical Modeling, J. Environ. Chem. Eng., 4(4), 3848-3855.
  • 28. Panda, G.C., Das, S.K., Guha, A.K., 2009. Jute Stick Powder as a Potential Biomass for the Removal of Congo Red and Rhodamine B from their Aqueous Solution, J. Hazard. Mater., 164, 374-379.
  • 29. Wang, Z.W., Han, P., Jiao, Y.B., He, X.T., Dou, C.C., Han, R.P., 2011. Adsorption of Congo Red Using Ethylenediamine Modified Wheat Straw, Desalination Water Treatment, 30, 195-206.
  • 30. Abbas, M., Trari, M., 2015. Kinetic, Equilibrium and Thermodynamic Study on the Removal of Congo Red from Aqueous Solutions By Adsorption onto Apricot Stone, Process Saf. Environ. Prot., 98, 424-436.
  • 31. Alatalo, S.M., Mäkilä, E., Repo, E., Heinonen, M., Salonen, J., Kukk E., 2016. Mesoand Microporous Soft Templated Hydrothermal Carbons for Dye Removal from Water, Green Chem., 18, 1137-1146.
  • 32. Chern, J.M., Wu, C.Y., 2001. Desorption of Dye from Activated Carbon Beds: Effects of Temperature, pH and Alcohol, Water Res., 35, 4159-4165.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ömer Kazak

Publication Date March 31, 2020
Published in Issue Year 2020 Volume: 35 Issue: 1

Cite

APA Kazak, Ö. (2020). Doğal Bir Madde Olan Nişastadan Aktif Karbon Hazırlanması, Karakterizasyonu ve Adsorbent Olarak Kullanımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(1), 115-126. https://doi.org/10.21605/cukurovaummfd.764639
AMA Kazak Ö. Doğal Bir Madde Olan Nişastadan Aktif Karbon Hazırlanması, Karakterizasyonu ve Adsorbent Olarak Kullanımı. cukurovaummfd. March 2020;35(1):115-126. doi:10.21605/cukurovaummfd.764639
Chicago Kazak, Ömer. “Doğal Bir Madde Olan Nişastadan Aktif Karbon Hazırlanması, Karakterizasyonu Ve Adsorbent Olarak Kullanımı”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, no. 1 (March 2020): 115-26. https://doi.org/10.21605/cukurovaummfd.764639.
EndNote Kazak Ö (March 1, 2020) Doğal Bir Madde Olan Nişastadan Aktif Karbon Hazırlanması, Karakterizasyonu ve Adsorbent Olarak Kullanımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 1 115–126.
IEEE Ö. Kazak, “Doğal Bir Madde Olan Nişastadan Aktif Karbon Hazırlanması, Karakterizasyonu ve Adsorbent Olarak Kullanımı”, cukurovaummfd, vol. 35, no. 1, pp. 115–126, 2020, doi: 10.21605/cukurovaummfd.764639.
ISNAD Kazak, Ömer. “Doğal Bir Madde Olan Nişastadan Aktif Karbon Hazırlanması, Karakterizasyonu Ve Adsorbent Olarak Kullanımı”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/1 (March 2020), 115-126. https://doi.org/10.21605/cukurovaummfd.764639.
JAMA Kazak Ö. Doğal Bir Madde Olan Nişastadan Aktif Karbon Hazırlanması, Karakterizasyonu ve Adsorbent Olarak Kullanımı. cukurovaummfd. 2020;35:115–126.
MLA Kazak, Ömer. “Doğal Bir Madde Olan Nişastadan Aktif Karbon Hazırlanması, Karakterizasyonu Ve Adsorbent Olarak Kullanımı”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35, no. 1, 2020, pp. 115-26, doi:10.21605/cukurovaummfd.764639.
Vancouver Kazak Ö. Doğal Bir Madde Olan Nişastadan Aktif Karbon Hazırlanması, Karakterizasyonu ve Adsorbent Olarak Kullanımı. cukurovaummfd. 2020;35(1):115-26.