Research Article
BibTex RIS Cite

CuO Nanoyapıların Karakterizasyonu ve Üretimi: Elektrokatatlitik Hidrojen Üretimindeki Uygulamaları

Year 2020, Volume: 35 Issue: 1, 127 - 138, 31.03.2020
https://doi.org/10.21605/cukurovaummfd.764641

Abstract

Yenilenebilir ve sürdürülebilir bir enerji şekli olarak fosil yakıtların yerini alabilecek başlıca enerji kaynaklarından biri olan hidrojen, temiz emisyon ve yüksek dönüşüm verimliliği nedeniyle artan bir ilgi görmektedir. Suyun elektrolizi ile H2 üretimini daha verimli ve ekonomik hale getirmek için, elektrotların aşırı gerilimlerinin azaltılması ve aynı zamanda, iyi bir elektrokatalitik etkinliğe sahip ucuz ve kararlı elektrotların seçilmesini gerektirir. Bu çalışmada, CuO nanoyapılar, kimyasal teknikle sentezlenmiştir.
CuO nanoyapıların morfolojileri ve yapıları, FE-SEM, BET ve XRD ile ayrıntılı olarak karakterize edilmiştir. Üç farklı morfolojiye sahip CuO nanoyapılar (Nanorod, nanoflake ve nano-çiçek) elde edilmiştir Elde edilen malzeme yüzeylerinin ıslanma davranışını belirlemek için temas açısı ölçümleri kullanılmıştır. Elektrotların hidrojen oluşum reaksiyonundaki elektrokatalitik etkinliği hakkında bilgi edinmek amacıyla katodik polarizasyon, açık devre-süre ölçümleri, impedans ölçümleri ve Mott-Schottky analizi 1M KOH çözeltisinde gerçekleştirilmiştir. Ayrıca, alkalin elektroliz için elektrotların enerji tüketim verimlilikleri incelenmiştir.

References

  • 1. Sun, Y., Yan, K.P., 2014. Effect of Anodization Voltage on Performance of TiO2 Nanotube Arrays for Hydrogen Generation in a Two-compartment Photoelectrochemical Cell, International Journal of Hydrogen Energy 39(22), 11368-11375.
  • 2. Wang, J.X., Huang, J., Xie, H.L., Qu, A.L., 2014. Synthesis of g-C3N4/TiO2 With Enhanced Photocatalytic Activity for H-2 Evolution by a Simple Method, International Journal of Hydrogen Energy 39(12), 6354-6363.
  • 3. Guo, S.Y., Zhao, T.J., Jin, Z.Q., Wan, X.M., Wang, P.G., Shang, J., Han, S., 2015. Self- Assembly Synthesis of Precious-metal-free 3D ZnO Nano/micro Spheres With Excellent Photocatalytic Hydrogen Production from Solar Water Splitting, Journal of Power Sources 293, 17-22.
  • 4. Zhou, H., Pan, J.Y., Ding, L., Tang, Y.W., Ding, J., Guo, Q.X., Fan, T., Zhang, D., 2014. Biomass-derived Hierarchical Porous CdS/M/TiO2 (M = Au, Ag, pt, pd) Ternary Heterojunctions for Photocatalytic Hydrogen Evolution, International Journal of Hydrogen Energy 39(29), 16293-16301.
  • 5. Cui, X.F., Jiang, G.Y., Zhu, M., Zhao, Z., Du, L.C., Weng, Y.X., Xu, C., Zhang, D., Zhang, Q., Wei, Y., Duan, A., Liu, J., Gao, J., 2013. TiO2/CdS Composite Hollow Spheres With Controlled Synthesis of Platinum on the Internal Wall for the Efficient Hydrogen Evolution, International Journal of Hydrogen Energy 38(22), 9065-9073.
  • 6. Harun, N.F.A.B., bin Mohd, Y., Pei, L.Y., Chin, L.Y., 2018. Fabrication of Tungsten Trioxide-loaded Titania Nanotubes as a Potential Photoanode for Photoelectrochemical Cell, International Journal of Electrochemical Science 13(5), 5041-5053.
  • 7. Townsend, T.K., Sabio, E.M., Browning, N.D., Osterloh, F.E., 2011. Photocatalytic Water Oxidation with Suspended Alpha-Fe2O3 Particles-effects of Nanoscaling, Energy & Environmental Science 4(10), 4270-4275.
  • 8. Berglund, S.P., Flaherty, D.W., Hahn, N.T., Bard, A.J., Mullins, C.B., 2011. Photoelectrochemical Oxidation of Water Using Nanostructured BiVO4 Films, Journal of Physical Chemistry, C 115(9), 3794-3802.
  • 9. Wu, Q.Y., Diao, P., Sun, J., Xu, D., Jin, T., Xiang, M., 2015. Draining the Photoinduced Electrons Away from an Anode: the Preparation of Ag/Ag3PO4 Composite Nanoplate Photoanodes for Highly Efficient Water Splitting, Journal of Materials Chemistry A 3(37), 18991-18999.
  • 10. Chen, Z.B., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Takanabe, K., Heske, C., Sunkara, M.K, McFarland, E.W., Domen, K., Miller, E., Turner, J.A., Dinh, H.N., 2010. Accelerating Materials Development for Photoelectrochemical Hydrogen Production: Standards for Methods, Definitions, and Reporting Protocols, Journal of Materials Research 25(1), 3-16.
  • 11. Khaselev, O., Turner, J.A., 1998. A Monolithic Photovoltaic-photoelectrochemical Device for Hydrogen Production Via Water Splitting, Science 280(5362), 425-427.
  • 12. Gao, L., Cui, Y.C., Wang, J., Cavalli, A., Standing, A., Vu, T., Verheijen, M.A., Haverkort, J.E.M., Bakkers, E., Notten, P.H.L., 2014. Photoelectrochemical Hydrogen Production on InP Nanowire Arrays with Molybdenum Sulfide Electrocatalysts, Nano Letters 14(7), 3715-3719.
  • 13. McKone, J.R., Pieterick, A.P., Gray, H.B., Lewis, N.S., 2013. Hydrogen Evolution from Pt/Ru-Coated p-Type WSe2 Photocathodes, Journal of the American Chemical Society 135(1), 223-231.
  • 14. Dominey, R.N., Lewis, N.S., Bruce, J.A., Bookbinder, D.C., Wrighton, M.S., 1982. Improvement of Photo-Electrochemical Hydrogen Generation by Surface Modification of P-Type Silicon Semiconductor Photo-Cathodes, Journal of the American Chemical Society 104(2), 467-482.
  • 15. Huang, Q., Li, Q., Xiao, X.D., 2014. Hydrogen Evolution from Pt Nanoparticles Covered p-Type CdS:Cu Photocathode in Scavenger- Free Electrolyte, Journal of Physical Chemistry C 118(5), 2306-2311.
  • 16. Nancheva, N., Docheva, P., Misheva, M., 1999. Defects in Cu and Cu-O Films Produced by Reactive Magnetron Sputtering, Materials Letters 39(2), 81-85.
  • 17. Mu, C., He, J.H., 2011. Confined Conversion of CuS Nanowires to CuO Nanotubes by Annealing-induced Diffusion in Nanochannels, Nanoscale Research Letters 6.
  • 18. Shen, X.P., Liu, H.J., Pan, L., Chen, K.M., Hong, J.M., Xu, Z., 2004. An Efficient Template Pathway to Synthesis of Ordered Metal Oxide Nanotube Arrays using Metal Acetylacetonates as Single-source Molecular Precursors, Chemistry Letters 33(9), 1128-1129.
  • 19. Chaudhary, A., Barshilia, H.C., 2011. Nanometric Multiscale Rough CuO/Cu(OH)(2) Superhydrophobic Surfaces Prepared by a Facile One-Step Solution-Immersion Process: Transition to Superhydrophilicity with Oxygen Plasma Treatment, Journal of Physical Chemistry C 115(37), 18213-18220.
  • 20. Schlur, L., Bonnot, K., Spitzer, D., 2014. Synthesis of Cu(OH)(2) and CuO Nanotubes Arrays on a Silicon Wafer, Rsc Advances 5(8), 6061-6070.
  • 21. Ke, X., Zhou, X., Gao, H., Hao, G.Z., Xiao, L., Chen, T., Liu, J., Jiang, W., 2018. Surface Functionalized Core/shell Structured CuO/Al Nanothermite with Long-term Storage Stability and Steady Combustion Performance, Materials & Design 140(15), 179-187.
  • 22. Zhang, Q.B., Zhang, K.L., Xu, D.G., Yang, G.C., Huang, H., Nie, F.D., Liu, C., Yang, S., 2014. CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications, Progress in Materials Science 60(1), 208-337.
  • 23. Guo, X., Diao, P., Xu, D., Huang, S., Yang, Y., Jin, T., Wu, Q., Xiang, M., Zhang, M., 2014. CuO/Pd Composite Photocathodes for Photoelectrochemical Hydrogen Evolution Reaction, International Journal of Hydrogen Energy 39(15), 7686-7696.
  • 24. Li, Z.Z., Xin, Y.M., Zhang, Z.H., Wu, H.J., Wang, P., 2015. Rational Design of Binder-free Noble Metal/metal Oxide Arrays with Nanocauliflower Structure for Wide Linear Range Nonenzymatic Glucose Detection, Scientific Reports 5, 10617.
  • 25. Espejo, E.M.A., Balela, M.D.L., 2017. Facile Synthesis of Cupric Hydroxide and Cupric Oxide on Copper Foil for Potential Electrochemical Applications, 7th International Conference on Key Engineering Materials (Ickem 2017) 201.
  • 26. Amin, M.A., Fadlallah, S.A., Alosaimi, G.S., 2014. In Situ Aqueous Synthesis of Silver Nanoparticles Supported on Titanium as Active Electrocatalyst for the Hydrogen Evolution Reaction, International Journal of Hydrogen Energy 39(34), 19519-19540.
  • 27. Mahmood, A., Tezcan, F., Kardas, G., 2017. Photoelectrochemical Characteristics of CuO Films with Different Electrodeposition Time, International Journal of Hydrogen Energy 42(36), 23268-23275.
  • 28. Hao, X.Q., Wang, Y.C., Zhou, J., Cui, Z.W., Wang, Y., Zou, Z.G., 2018. Zinc Vacancy- promoted Photocatalytic Activity and Photostability of ZnS for Efficient Visible- light-driven Hydrogen Evolution, Applied Catalysis B-Environmental 221, 302-311.
  • 29. Herraiz-Cardona, I., Ortega, E., Vazquez- Gomez, L., Perez-Herranz, V., 2011.Electrochemical Characterization of a NiCo/Zn Cathode for Hydrogen Generation, International Journal of Hydrogen Energy 36(18), 11578-11587.
  • 30. Yuce, A.O., Doner, A., Kardas, G., 2013. NiMn Composite Electrodes as Cathode Material for Hydrogen Evolution Reaction in Alkaline Solution, International Journal of Hydrogen Energy 38(11), 4466-4473.
  • 31. Farsak, M., Telli, E., Yuce, A.O., Kardas, G., 2017. The Noble Metal Loading Binary Iron- zinc Electrode for Hydrogen Production, International Journal of Hydrogen Energy 42(10), 6455-6461.
  • 32. Nikolic, V.M., Tasic, G.S., Maksic, A.D., Saponjic, D.P., Miulovic, S.M., Kaninski, M.P.M., 2010. Raising Efficiency of Hydrogen Generation from Alkaline Water Electrolysis- Energy Saving, International Journal of Hydrogen Energy 35(22), 12369-12373.

Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production

Year 2020, Volume: 35 Issue: 1, 127 - 138, 31.03.2020
https://doi.org/10.21605/cukurovaummfd.764641

Abstract

Hydrogen which is a renewable and sustainable form of energy to replace fossil fuels has been has been attracted great interest because of clean emission and high conversion efficiencies. To make water electrolyzer more profitable and economical, the selection of electrodes having low overpotentials, low- cost and stable with well electrocatalytic activity is required. In this study, CuO nanostructures were fabricated by chemical techniques. The morphologies and structures of CuO nanostructures were studied in detail by FE-SEM, BET, and XRD. Three different morphologies of CuO (Nanorod, nanoflake and nano-flower nanostructures) were synthesized. The contact angle measurements were carried out to state the surface properties of the synthesized materials. The cathodic polarization, open circuit potential-time measurements, impedance measurements and Mott-Schottky analysis were carried out in 1M KOH solution to determine the electrocatalytic performance of electrodes in hydrogen formation reaction. Besides, energy consumption efficiencies of electrodes for alkaline electrolysis were investigated.

References

  • 1. Sun, Y., Yan, K.P., 2014. Effect of Anodization Voltage on Performance of TiO2 Nanotube Arrays for Hydrogen Generation in a Two-compartment Photoelectrochemical Cell, International Journal of Hydrogen Energy 39(22), 11368-11375.
  • 2. Wang, J.X., Huang, J., Xie, H.L., Qu, A.L., 2014. Synthesis of g-C3N4/TiO2 With Enhanced Photocatalytic Activity for H-2 Evolution by a Simple Method, International Journal of Hydrogen Energy 39(12), 6354-6363.
  • 3. Guo, S.Y., Zhao, T.J., Jin, Z.Q., Wan, X.M., Wang, P.G., Shang, J., Han, S., 2015. Self- Assembly Synthesis of Precious-metal-free 3D ZnO Nano/micro Spheres With Excellent Photocatalytic Hydrogen Production from Solar Water Splitting, Journal of Power Sources 293, 17-22.
  • 4. Zhou, H., Pan, J.Y., Ding, L., Tang, Y.W., Ding, J., Guo, Q.X., Fan, T., Zhang, D., 2014. Biomass-derived Hierarchical Porous CdS/M/TiO2 (M = Au, Ag, pt, pd) Ternary Heterojunctions for Photocatalytic Hydrogen Evolution, International Journal of Hydrogen Energy 39(29), 16293-16301.
  • 5. Cui, X.F., Jiang, G.Y., Zhu, M., Zhao, Z., Du, L.C., Weng, Y.X., Xu, C., Zhang, D., Zhang, Q., Wei, Y., Duan, A., Liu, J., Gao, J., 2013. TiO2/CdS Composite Hollow Spheres With Controlled Synthesis of Platinum on the Internal Wall for the Efficient Hydrogen Evolution, International Journal of Hydrogen Energy 38(22), 9065-9073.
  • 6. Harun, N.F.A.B., bin Mohd, Y., Pei, L.Y., Chin, L.Y., 2018. Fabrication of Tungsten Trioxide-loaded Titania Nanotubes as a Potential Photoanode for Photoelectrochemical Cell, International Journal of Electrochemical Science 13(5), 5041-5053.
  • 7. Townsend, T.K., Sabio, E.M., Browning, N.D., Osterloh, F.E., 2011. Photocatalytic Water Oxidation with Suspended Alpha-Fe2O3 Particles-effects of Nanoscaling, Energy & Environmental Science 4(10), 4270-4275.
  • 8. Berglund, S.P., Flaherty, D.W., Hahn, N.T., Bard, A.J., Mullins, C.B., 2011. Photoelectrochemical Oxidation of Water Using Nanostructured BiVO4 Films, Journal of Physical Chemistry, C 115(9), 3794-3802.
  • 9. Wu, Q.Y., Diao, P., Sun, J., Xu, D., Jin, T., Xiang, M., 2015. Draining the Photoinduced Electrons Away from an Anode: the Preparation of Ag/Ag3PO4 Composite Nanoplate Photoanodes for Highly Efficient Water Splitting, Journal of Materials Chemistry A 3(37), 18991-18999.
  • 10. Chen, Z.B., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Takanabe, K., Heske, C., Sunkara, M.K, McFarland, E.W., Domen, K., Miller, E., Turner, J.A., Dinh, H.N., 2010. Accelerating Materials Development for Photoelectrochemical Hydrogen Production: Standards for Methods, Definitions, and Reporting Protocols, Journal of Materials Research 25(1), 3-16.
  • 11. Khaselev, O., Turner, J.A., 1998. A Monolithic Photovoltaic-photoelectrochemical Device for Hydrogen Production Via Water Splitting, Science 280(5362), 425-427.
  • 12. Gao, L., Cui, Y.C., Wang, J., Cavalli, A., Standing, A., Vu, T., Verheijen, M.A., Haverkort, J.E.M., Bakkers, E., Notten, P.H.L., 2014. Photoelectrochemical Hydrogen Production on InP Nanowire Arrays with Molybdenum Sulfide Electrocatalysts, Nano Letters 14(7), 3715-3719.
  • 13. McKone, J.R., Pieterick, A.P., Gray, H.B., Lewis, N.S., 2013. Hydrogen Evolution from Pt/Ru-Coated p-Type WSe2 Photocathodes, Journal of the American Chemical Society 135(1), 223-231.
  • 14. Dominey, R.N., Lewis, N.S., Bruce, J.A., Bookbinder, D.C., Wrighton, M.S., 1982. Improvement of Photo-Electrochemical Hydrogen Generation by Surface Modification of P-Type Silicon Semiconductor Photo-Cathodes, Journal of the American Chemical Society 104(2), 467-482.
  • 15. Huang, Q., Li, Q., Xiao, X.D., 2014. Hydrogen Evolution from Pt Nanoparticles Covered p-Type CdS:Cu Photocathode in Scavenger- Free Electrolyte, Journal of Physical Chemistry C 118(5), 2306-2311.
  • 16. Nancheva, N., Docheva, P., Misheva, M., 1999. Defects in Cu and Cu-O Films Produced by Reactive Magnetron Sputtering, Materials Letters 39(2), 81-85.
  • 17. Mu, C., He, J.H., 2011. Confined Conversion of CuS Nanowires to CuO Nanotubes by Annealing-induced Diffusion in Nanochannels, Nanoscale Research Letters 6.
  • 18. Shen, X.P., Liu, H.J., Pan, L., Chen, K.M., Hong, J.M., Xu, Z., 2004. An Efficient Template Pathway to Synthesis of Ordered Metal Oxide Nanotube Arrays using Metal Acetylacetonates as Single-source Molecular Precursors, Chemistry Letters 33(9), 1128-1129.
  • 19. Chaudhary, A., Barshilia, H.C., 2011. Nanometric Multiscale Rough CuO/Cu(OH)(2) Superhydrophobic Surfaces Prepared by a Facile One-Step Solution-Immersion Process: Transition to Superhydrophilicity with Oxygen Plasma Treatment, Journal of Physical Chemistry C 115(37), 18213-18220.
  • 20. Schlur, L., Bonnot, K., Spitzer, D., 2014. Synthesis of Cu(OH)(2) and CuO Nanotubes Arrays on a Silicon Wafer, Rsc Advances 5(8), 6061-6070.
  • 21. Ke, X., Zhou, X., Gao, H., Hao, G.Z., Xiao, L., Chen, T., Liu, J., Jiang, W., 2018. Surface Functionalized Core/shell Structured CuO/Al Nanothermite with Long-term Storage Stability and Steady Combustion Performance, Materials & Design 140(15), 179-187.
  • 22. Zhang, Q.B., Zhang, K.L., Xu, D.G., Yang, G.C., Huang, H., Nie, F.D., Liu, C., Yang, S., 2014. CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications, Progress in Materials Science 60(1), 208-337.
  • 23. Guo, X., Diao, P., Xu, D., Huang, S., Yang, Y., Jin, T., Wu, Q., Xiang, M., Zhang, M., 2014. CuO/Pd Composite Photocathodes for Photoelectrochemical Hydrogen Evolution Reaction, International Journal of Hydrogen Energy 39(15), 7686-7696.
  • 24. Li, Z.Z., Xin, Y.M., Zhang, Z.H., Wu, H.J., Wang, P., 2015. Rational Design of Binder-free Noble Metal/metal Oxide Arrays with Nanocauliflower Structure for Wide Linear Range Nonenzymatic Glucose Detection, Scientific Reports 5, 10617.
  • 25. Espejo, E.M.A., Balela, M.D.L., 2017. Facile Synthesis of Cupric Hydroxide and Cupric Oxide on Copper Foil for Potential Electrochemical Applications, 7th International Conference on Key Engineering Materials (Ickem 2017) 201.
  • 26. Amin, M.A., Fadlallah, S.A., Alosaimi, G.S., 2014. In Situ Aqueous Synthesis of Silver Nanoparticles Supported on Titanium as Active Electrocatalyst for the Hydrogen Evolution Reaction, International Journal of Hydrogen Energy 39(34), 19519-19540.
  • 27. Mahmood, A., Tezcan, F., Kardas, G., 2017. Photoelectrochemical Characteristics of CuO Films with Different Electrodeposition Time, International Journal of Hydrogen Energy 42(36), 23268-23275.
  • 28. Hao, X.Q., Wang, Y.C., Zhou, J., Cui, Z.W., Wang, Y., Zou, Z.G., 2018. Zinc Vacancy- promoted Photocatalytic Activity and Photostability of ZnS for Efficient Visible- light-driven Hydrogen Evolution, Applied Catalysis B-Environmental 221, 302-311.
  • 29. Herraiz-Cardona, I., Ortega, E., Vazquez- Gomez, L., Perez-Herranz, V., 2011.Electrochemical Characterization of a NiCo/Zn Cathode for Hydrogen Generation, International Journal of Hydrogen Energy 36(18), 11578-11587.
  • 30. Yuce, A.O., Doner, A., Kardas, G., 2013. NiMn Composite Electrodes as Cathode Material for Hydrogen Evolution Reaction in Alkaline Solution, International Journal of Hydrogen Energy 38(11), 4466-4473.
  • 31. Farsak, M., Telli, E., Yuce, A.O., Kardas, G., 2017. The Noble Metal Loading Binary Iron- zinc Electrode for Hydrogen Production, International Journal of Hydrogen Energy 42(10), 6455-6461.
  • 32. Nikolic, V.M., Tasic, G.S., Maksic, A.D., Saponjic, D.P., Miulovic, S.M., Kaninski, M.P.M., 2010. Raising Efficiency of Hydrogen Generation from Alkaline Water Electrolysis- Energy Saving, International Journal of Hydrogen Energy 35(22), 12369-12373.
There are 32 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Evrim Baran Aydın This is me

Publication Date March 31, 2020
Published in Issue Year 2020 Volume: 35 Issue: 1

Cite

APA Baran Aydın, E. (2020). Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(1), 127-138. https://doi.org/10.21605/cukurovaummfd.764641
AMA Baran Aydın E. Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production. cukurovaummfd. March 2020;35(1):127-138. doi:10.21605/cukurovaummfd.764641
Chicago Baran Aydın, Evrim. “Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, no. 1 (March 2020): 127-38. https://doi.org/10.21605/cukurovaummfd.764641.
EndNote Baran Aydın E (March 1, 2020) Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 1 127–138.
IEEE E. Baran Aydın, “Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production”, cukurovaummfd, vol. 35, no. 1, pp. 127–138, 2020, doi: 10.21605/cukurovaummfd.764641.
ISNAD Baran Aydın, Evrim. “Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/1 (March 2020), 127-138. https://doi.org/10.21605/cukurovaummfd.764641.
JAMA Baran Aydın E. Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production. cukurovaummfd. 2020;35:127–138.
MLA Baran Aydın, Evrim. “Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35, no. 1, 2020, pp. 127-38, doi:10.21605/cukurovaummfd.764641.
Vancouver Baran Aydın E. Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production. cukurovaummfd. 2020;35(1):127-38.