Research Article
BibTex RIS Cite

True Variable-Depth Milling of Nickel-Based Alloy IN-718

Year 2020, Volume: 35 Issue: 3, 583 - 592, 30.09.2020
https://doi.org/10.21605/cukurovaummfd.846266

Abstract

Rapid tool wear in machining causes increased process cost. While flank wear and crater wear have been investigated deeply by researchers, notch wear has been somewhat overlooked, despite the fact that it has an important role in the tool replacement decision. Notch wear happens due to impact forces at the depth of cut particularly during intermittent cutting. To avoid frequent tool change decisions, varying the depth of cut constantly during machining has been proposed as an alternative. In this study, milling experiments were conducted on the nickel-based alloy IN-718 where the depth of cut was varied throughout the cut.
Results show favorable findings towards eliminating notch wear without compromising from machining efficiency.

References

  • 1. Ulutan, D., Özel, T., 2011. Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review. International Journal of Machine Tools and Manufacture, 51(3), 250-80.
  • 2. Özel, T., Ulutan, D., 2014. Effects of Machining Parameters and Tool Geometry on Serrated Chip Formation, Specific Forces and Energies in Orthogonal Cutting of Nickel- based Super Alloy Inconel 100. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228(7), 673-86.
  • 3. Özdemir, U., Erten, M., 2003. Talaşlı Imalat Sırasında Kesici Takımda Meydana Gelen Hasar Mekanizmaları ve Takım Hasarını Azaltma Yöntemleri. Havacılık ve Uzay Teknolojileri Dergisi, 1(1), 37-50.
  • 4. Kumar, A.S., Durai, A.R., Sornakumar, T., 2006. The Effect of Tool Wear on Tool Life of Alumina-based Ceramic Cutting Tools While Machining Hardened Martensitic Stainless Steel. Journal of Materials Processing Technology, 173(2), 151-6.
  • 5. Pleta, A., Ulutan, D., Mears, L., 2015. An Investigation of Alternative Path Planning Strategies for Machining of Nickel-based Superalloys. Procedia Manufacturing, 1, 556-66.
  • 6. Thamizhmanii, S., Hasan, S., 2006. Analyses of Roughness, Forces and Wear in Turning Gray Cast Iron. Journal of Achievements in Materials and Manufacturing Engineering, 17(1-2), 401-4.
  • 7. Chandrasekaran, H., Johansson, J.O., 1994. Chip Flow and Notch Wear Mechanisms During the Machining of High Austenitic Stainless Steels. CIRP Annals, 43(1), 101-5.
  • 8. ISO 3685, 1993. Tool-life Testing with Single- point Turning Tools.
  • 9. Ulutan, D., 2020. True Variable-depth Milling. Procedia Manufacturing, 48, 593-597.
  • 10. Cerce, L., Pusavec, F., Kopac, J., 2015. 3D Cutting Tool-wear Monitoring in the Process. Journal of Mechanical Sience and Technology, 29(9), 3885-95.
  • 11. Li, X., 2002. A Brief Review: Acoustic Emission Method for Tool Wear Monitoring During Turning. International Journal of Machine Tools & Manufacture, 42, 157-65.
  • 12. Akhavan Niaki, F., Ulutan, D., Mears, L., 2015. Parameter Estimation using Markov Chain Monte Carlo Method in Mechanistic Modeling of Tool Wear During Milling. Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference (MSEC 2015), Charlotte, NC, USA.
  • 13. Alonso, F.J., Salgado, D.R., 2015. Application of Singular Spectrum Analysis to Tool Wear Detection Using Sound Signals. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(9), 703-10.
  • 14. Sharma, V.S., Sharma, S.K., Sharma, A.K., 2008. Cutting Tool Wear Estimation for Turning. Journal of Intelligent Manufacturing, 19, 99-108.
  • 15. Akhavan Niaki, F., Feng, L., Ulutan, D., Mears, L., 2016. A Wavelet-based Data-driven Modeling for Tool Wear Assessment of Difficult to Machine Materials. International Journal of Mechatronics and Manufacturing Systems, 9(2), 97-121.
  • 16. Zhang, S., Li, J.F., Sun, J., Jiang, F., 2010. Tool Wear and Cutting Forces Variation in High-speed End-milling Ti-6Al-4V Alloy. International Journal of Advanced Manufacturing Technology, 46, 69-78.
  • 17. Hatt, O., Crawforth, P., Jackson, M., 2017. On the Mechanism of Tool Crater Wear During Titanium Alloy Machining. Wear, 374-375, 15-20.
  • 18. Yıldırım, Ç.V., Kıvak, T., Erzincanlı, F., 2019. Tool Wear and Surface Roughness Analysis in Milling with Ceramic Tools of Waspaloy: A Comparison of Machining Performance with Different Cooling Methods. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(2), 83.
  • 19. Yalçın, B., Özgür, A.E., Koru, M., 2009. The Effects of Various Cooling Strategies on Surface Roughness and Tool Wear During Soft Materials Milling. Materials & Design, 30(3), 896-9.
  • 20. Kuram, E., Özçelik, B., 2016. Effects of Tool Paths and Machining Parameters on the Performance in Micro-milling of Ti6Al4V Titanium with High-speed Spindle Attachment. The International Journal of Advanced Manufacturing Technology 84(1-4), 691-703.
  • 21. Bhushan, R.K., Kumar, S., Das, S., 2010. Effect of Machining Parameters on Surface Roughness and Tool Wear for 7075 Al Alloy SiC Composite. The International Journal of Advanced Manufacturing Technology, 50 (5-8), 459-69.
  • 22. Sivasakthivel, P.S., Velmurugan, V., Sudhakaran, R., 2011. Prediction of Vibration Amplitude from Machining Parameters by Response Surface Methodology in End Milling. The International Journal of Advanced Manufacturing Technology, 53(5-8), 453-61.
  • 23. Özel, T., Thepsonthi, T., Ulutan, D., Kaftanoğlu, B., 2011. Experiments and Finite Element Simulations on Micro-milling of Ti– 6Al–4V Alloy with Uncoated and cBN Coated Micro-tools. CIRP Annals, 60(1), 85-8.
  • 24. Maohua, X., Ning, H.E., Liang, L.I., 2010. Modeling Notch Wear of Ceramic Tool in High Speed Machining of Nickel-based Superalloy. Journal of Wuhan University of Technology – Materials Science Edition, 25(1), 78-83.
  • 25. Zeng, H., Yan, R., Du, P., Zhang, M., Peng, F., 2018. Notch Wear Prediction Model in High Speed Milling of AerMet100 Steel with Bull- nose Tool Considering the Influence of Stress Concentration. Wear, 408-409, 228-37.
  • 26. Astakhov, V.P., 2007. Effects of the Cutting Feed, Depth of Cut, and Workpiece (bore) Diameter on the Tool Wear Rate. The International Journal of Advanced Manufacturing Technology, 34(7-8), 631-40.
  • 27. Altın, A., Nalbant, M., Taşkesen, A., 2007. The Effects of Cutting Speed on Tool Wear and Tool Life When Machining Inconel 718 with Ceramic Tools. Materials & Design, 28(9), 2518-22.

Nikel-Bazlı Alaşımlarda (IN-718) Gerçek Değişken-Derinlikli Frezeleme

Year 2020, Volume: 35 Issue: 3, 583 - 592, 30.09.2020
https://doi.org/10.21605/cukurovaummfd.846266

Abstract

Metal işleme sırasında takımın hızlı aşınması artan proses maliyetine neden olur. Kanat aşınması ve krater aşınması literatürde derinlemesine incelenirken, takım değiştirme kararında önemli bir rol oynayan çentik aşınması ikinci plana itilmiştir. Çentik aşınması, özellikle aralıklı kesim sırasında kesme derinliğindeki darbe kuvvetleri nedeniyle meydana gelir. Takımı sık değiştirmemek için alternatif olarak işleme sırasında kesme derinliğinin sürekli olarak değiştirilmesi önerilmiştir. Bu çalışmada, nikel-bazlı IN-718 alaşımında kesme derinliğinin kesim boyunca değiştiği frezeleme deneyleri gerçekleştirilmiştir. Sonuçlar, işleme verimliliğinden ödün vermeden çentik aşınmasını ortadan kaldırmaya yönelik olumlu bulgular göstermektedir.

References

  • 1. Ulutan, D., Özel, T., 2011. Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review. International Journal of Machine Tools and Manufacture, 51(3), 250-80.
  • 2. Özel, T., Ulutan, D., 2014. Effects of Machining Parameters and Tool Geometry on Serrated Chip Formation, Specific Forces and Energies in Orthogonal Cutting of Nickel- based Super Alloy Inconel 100. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228(7), 673-86.
  • 3. Özdemir, U., Erten, M., 2003. Talaşlı Imalat Sırasında Kesici Takımda Meydana Gelen Hasar Mekanizmaları ve Takım Hasarını Azaltma Yöntemleri. Havacılık ve Uzay Teknolojileri Dergisi, 1(1), 37-50.
  • 4. Kumar, A.S., Durai, A.R., Sornakumar, T., 2006. The Effect of Tool Wear on Tool Life of Alumina-based Ceramic Cutting Tools While Machining Hardened Martensitic Stainless Steel. Journal of Materials Processing Technology, 173(2), 151-6.
  • 5. Pleta, A., Ulutan, D., Mears, L., 2015. An Investigation of Alternative Path Planning Strategies for Machining of Nickel-based Superalloys. Procedia Manufacturing, 1, 556-66.
  • 6. Thamizhmanii, S., Hasan, S., 2006. Analyses of Roughness, Forces and Wear in Turning Gray Cast Iron. Journal of Achievements in Materials and Manufacturing Engineering, 17(1-2), 401-4.
  • 7. Chandrasekaran, H., Johansson, J.O., 1994. Chip Flow and Notch Wear Mechanisms During the Machining of High Austenitic Stainless Steels. CIRP Annals, 43(1), 101-5.
  • 8. ISO 3685, 1993. Tool-life Testing with Single- point Turning Tools.
  • 9. Ulutan, D., 2020. True Variable-depth Milling. Procedia Manufacturing, 48, 593-597.
  • 10. Cerce, L., Pusavec, F., Kopac, J., 2015. 3D Cutting Tool-wear Monitoring in the Process. Journal of Mechanical Sience and Technology, 29(9), 3885-95.
  • 11. Li, X., 2002. A Brief Review: Acoustic Emission Method for Tool Wear Monitoring During Turning. International Journal of Machine Tools & Manufacture, 42, 157-65.
  • 12. Akhavan Niaki, F., Ulutan, D., Mears, L., 2015. Parameter Estimation using Markov Chain Monte Carlo Method in Mechanistic Modeling of Tool Wear During Milling. Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference (MSEC 2015), Charlotte, NC, USA.
  • 13. Alonso, F.J., Salgado, D.R., 2015. Application of Singular Spectrum Analysis to Tool Wear Detection Using Sound Signals. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(9), 703-10.
  • 14. Sharma, V.S., Sharma, S.K., Sharma, A.K., 2008. Cutting Tool Wear Estimation for Turning. Journal of Intelligent Manufacturing, 19, 99-108.
  • 15. Akhavan Niaki, F., Feng, L., Ulutan, D., Mears, L., 2016. A Wavelet-based Data-driven Modeling for Tool Wear Assessment of Difficult to Machine Materials. International Journal of Mechatronics and Manufacturing Systems, 9(2), 97-121.
  • 16. Zhang, S., Li, J.F., Sun, J., Jiang, F., 2010. Tool Wear and Cutting Forces Variation in High-speed End-milling Ti-6Al-4V Alloy. International Journal of Advanced Manufacturing Technology, 46, 69-78.
  • 17. Hatt, O., Crawforth, P., Jackson, M., 2017. On the Mechanism of Tool Crater Wear During Titanium Alloy Machining. Wear, 374-375, 15-20.
  • 18. Yıldırım, Ç.V., Kıvak, T., Erzincanlı, F., 2019. Tool Wear and Surface Roughness Analysis in Milling with Ceramic Tools of Waspaloy: A Comparison of Machining Performance with Different Cooling Methods. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(2), 83.
  • 19. Yalçın, B., Özgür, A.E., Koru, M., 2009. The Effects of Various Cooling Strategies on Surface Roughness and Tool Wear During Soft Materials Milling. Materials & Design, 30(3), 896-9.
  • 20. Kuram, E., Özçelik, B., 2016. Effects of Tool Paths and Machining Parameters on the Performance in Micro-milling of Ti6Al4V Titanium with High-speed Spindle Attachment. The International Journal of Advanced Manufacturing Technology 84(1-4), 691-703.
  • 21. Bhushan, R.K., Kumar, S., Das, S., 2010. Effect of Machining Parameters on Surface Roughness and Tool Wear for 7075 Al Alloy SiC Composite. The International Journal of Advanced Manufacturing Technology, 50 (5-8), 459-69.
  • 22. Sivasakthivel, P.S., Velmurugan, V., Sudhakaran, R., 2011. Prediction of Vibration Amplitude from Machining Parameters by Response Surface Methodology in End Milling. The International Journal of Advanced Manufacturing Technology, 53(5-8), 453-61.
  • 23. Özel, T., Thepsonthi, T., Ulutan, D., Kaftanoğlu, B., 2011. Experiments and Finite Element Simulations on Micro-milling of Ti– 6Al–4V Alloy with Uncoated and cBN Coated Micro-tools. CIRP Annals, 60(1), 85-8.
  • 24. Maohua, X., Ning, H.E., Liang, L.I., 2010. Modeling Notch Wear of Ceramic Tool in High Speed Machining of Nickel-based Superalloy. Journal of Wuhan University of Technology – Materials Science Edition, 25(1), 78-83.
  • 25. Zeng, H., Yan, R., Du, P., Zhang, M., Peng, F., 2018. Notch Wear Prediction Model in High Speed Milling of AerMet100 Steel with Bull- nose Tool Considering the Influence of Stress Concentration. Wear, 408-409, 228-37.
  • 26. Astakhov, V.P., 2007. Effects of the Cutting Feed, Depth of Cut, and Workpiece (bore) Diameter on the Tool Wear Rate. The International Journal of Advanced Manufacturing Technology, 34(7-8), 631-40.
  • 27. Altın, A., Nalbant, M., Taşkesen, A., 2007. The Effects of Cutting Speed on Tool Wear and Tool Life When Machining Inconel 718 with Ceramic Tools. Materials & Design, 28(9), 2518-22.
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Durul Ulutan This is me

Publication Date September 30, 2020
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Ulutan, D. (2020). True Variable-Depth Milling of Nickel-Based Alloy IN-718. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(3), 583-592. https://doi.org/10.21605/cukurovaummfd.846266
AMA Ulutan D. True Variable-Depth Milling of Nickel-Based Alloy IN-718. cukurovaummfd. September 2020;35(3):583-592. doi:10.21605/cukurovaummfd.846266
Chicago Ulutan, Durul. “True Variable-Depth Milling of Nickel-Based Alloy IN-718”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, no. 3 (September 2020): 583-92. https://doi.org/10.21605/cukurovaummfd.846266.
EndNote Ulutan D (September 1, 2020) True Variable-Depth Milling of Nickel-Based Alloy IN-718. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 3 583–592.
IEEE D. Ulutan, “True Variable-Depth Milling of Nickel-Based Alloy IN-718”, cukurovaummfd, vol. 35, no. 3, pp. 583–592, 2020, doi: 10.21605/cukurovaummfd.846266.
ISNAD Ulutan, Durul. “True Variable-Depth Milling of Nickel-Based Alloy IN-718”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/3 (September 2020), 583-592. https://doi.org/10.21605/cukurovaummfd.846266.
JAMA Ulutan D. True Variable-Depth Milling of Nickel-Based Alloy IN-718. cukurovaummfd. 2020;35:583–592.
MLA Ulutan, Durul. “True Variable-Depth Milling of Nickel-Based Alloy IN-718”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35, no. 3, 2020, pp. 583-92, doi:10.21605/cukurovaummfd.846266.
Vancouver Ulutan D. True Variable-Depth Milling of Nickel-Based Alloy IN-718. cukurovaummfd. 2020;35(3):583-92.