Research Article
BibTex RIS Cite

Determination of Polymer and Polymer Composites with Wear Resistant for Use in Electrical Contact Breaker

Year 2020, Volume: 35 Issue: 4, 835 - 846, 31.12.2020
https://doi.org/10.21605/cukurovaummfd.867357

Abstract

This study was carried out to determine the pair of materials with the best abrasion resistance in contact breakers in the electrical industry. Pin-on-disk wear test machine was used for tribological tests. For this purpose, 25wt.% long glass fiber reinforced and 40wt.% calcium carbonate added unsaturated polyester based thermoset composite material (25wt.%GF + 40wt.%CaCO3+UPET) was used as the disc material. As pin materials, unfilled poly-ether-sulfone (PES) polymer, 30wt.% glass fiber reinforced poly- phenylene-ether (PPE+SBS+30wt.%GF) composite and 15wt.% glass fiber reinforced poly-butylene- terephthalate/poly-ethylene-terephthalate mixture composite (PBT/PET+15wt.%GF) materials were used. Tribological experiments were carried out under dry sliding conditions and at room temperature. The experiments were carried out under pressure of 0.707, 1.415, 2.123 and 3.538 MPa and at a sliding speed of 0.5 m/s. As a result of wear and friction tests, friction coefficient and specific wear rates of materials used were determined. As a result of the experiments carried out, the highest wear rate was obtained in the unfilled PES polymer, while the lowest wear rate was obtained in PPE+SBS+30wt.%GF composite. As a result of the experiments carried out, PPE + SBS+30wt.%GF/25wt.%GF+40wt.%CaCO3+UPET thermoset composite pair has been determined as the most suitable material pair for use in contact breakers.

References

  • 1. Chunguang, L., Rongfeng, L., Yang, S., Manyu, H., Taishan, C., Wei, X., Xiaofeng, Y., 2011. Mechanical and Tribological Properties of PTW/PTFE/PPS/PES Composites. Advanced Materials Research, 284-286, 205-209.
  • 2. Shicheng, Y., Yulin, Y., Laizhou, S., Xiaowen, Q., Yahong, X., Changsheng, D., 2018. Tribological Behavior of Graphite Oxide Reinforced Polyethersulfone Composite under Drying Sliding Condition. Polymer Composites, 39(7), 2320-2335.
  • 3. Jianbing, C., Qiang, G., Zhengping, Z., Xianli, S., Xiaoming, W., Chunlai, D., 2013. Thermal, Crystalline, and Tribological Properties of PEEK/PEI/PES Plastics Alloys. Journal of Applied Polymer Science, 2220-2226.
  • 4. Galal, S., Dilyus, C., Victor, T., Valerii, T. 2019. Effect of Formation Route on the Mechanical Properties of the Polyethersulfone Composites Reinforced with Glass Fibers. Polymers, 1364, 1-11.
  • 5. Zhen, Z., Laizhou, S., Yulin, Y. 2015. Tribological Behavior of Polyethersulfone- Reinforced Polytetrafluoroethylene Composite Under Dry Sliding Condition. Tribology International, 86, 17–27.
  • 6. Yuan-Qing, L., Sen-Sen, D., Li-Yuan, L., Fei, L., De-Bo, L., Ze-Kun, Z., Hong-Mei, X., Ning, H., Shao-Yun, F., 2019. Synergistic Effects of Short Glass Fiber/Short Carbon Fiber Hybrids on the Mechanical Properties of Polyethersulfone Composites, Polymer Composites, 40(S2), 1725-1731.
  • 7. Ye, Z., Yingshuang, S., Haibo, Z., Lianjun, D., Yunping, Z., Yuntao, H., Zhenghua, J., 2018. Friction and Wear Properties of Poly (Ether Sulfone) Containing Perfluorocarbon end Group. High Performance Polymers, 30(2), 247-253.
  • 8. Mohit, S., Jayashree, B., Kuldeep, S., 2011. Studies for Wear Property Correlation for Carbon Fabric-Reinforced PES Composites. Tribology Letters, 43, 267–273.
  • 9. Ze-Kun, Z., Sen-Sen, D., Fei, L., Hong-Mei, X., Yuan-Qing, L., Wei-Gang, Z., Ning, H., Shao-Yun, F., 2018. Mechanical and Tribological Properties of Short Glass Fiber and Short Carbon Fiber Reinforced Polyethersulfone Composites: A Comparative Study. Composites Communications, 8, 1–6.
  • 10. Aravinthan, G., Kale, D.D., 2005. Blends of Poly (Ethylene Terephthalate) and Poly (Butylene Terephthalate). Journal of Applied Polymer Science, 98, 75–82.
  • 11. Mohammadreza, N., Hazal, O., 2019. Development of PBT/Recycled‑PET Blends and the Influence of Using Chain Extender. Journal of Polymers and the Environment, 27, 1404–1417.
  • 12. Marek, S., 2004. Mechanical and Thermal Properties of PET/PBT Blends. Molecular Crystals and Liquid Crystals, 416(1), 209-215.
  • 13. Hazer, S., Mehmet, Ö., Ayse, A., 2018. Characterization of Poly (Ethylene Terephthalate)/Poly (Butylene Terephthalate) Based Nanocomposites Reinforced with Reduced Graphene Oxide. 1st International Symposium on Light Alloys and Composite Materials (ISLAC’18), 22-24 Mart, Karabük, 35-39.
  • 14. Mohammed, A.B.R., David, A.S., Joao, M., 2018. Property/Morphology Relationships in SEBS-Compatibilized HDPE/Poly (Phenylene Ether) Blends. Macromolecules, 51(16), 6513-6523.
  • 15. Edward, N.P., 2017. Poly (Phenylene Ether) Based Amphiphilic Block Copolymers. Polymers, 9(9), 433-457.
  • 16. Do Kyun, K., Kwang Ho, S., Chong Min, K., Soon Man, H., Dong Wook, C., 2015. Characterization of Compatibilized Blends of Nylon 66/poly(2,6-dimethyl-1,4-phenylene ether)/high-impact Polystyrene Filled with Phosphinate-based Flame Retardants: Mechanical Property, Rheological Behavior and Flame Retardancy. Journal of Fire Sciences, 33(5), 339-357.
  • 17. Alper, A., Teresa, M., Merve, A., Volker, A., 2020. Properties of Styrene–Maleic Anhydride Copolymer Compatibilized Polyamide 66/Poly (Phenylene Ether) Blends: Effect of Maleic Anhydride Concentration and Copolymer Content. Materials, 13, 1237-1253.
  • 18. Lo, D., Chiang, C., Chang, F., 1997. Reactive Compatibilization of PET and PPE Blends by Epoxy Couplers. J. Appl. Polym. Sci. 65(4), 739-753.
  • 19. Akkapeddi, M.K., 2014. Commercial Polymer Blends. In Polymer Blends Handbook, 2nd ed.; Utracki, L.A., Wilkie, C.A., Eds.; Springer: Dordrecht, 1733-1883.
  • 20. Harshavardhan, B., Ravishankar, R., Suresha, B., Srinivas, S., Arun, C.D.U., 2020. Influence of Short Carbon Fiber Content on Thermal Properties of Polyethersulfone Composites. Materials Today: Proceedings, Available online 16 October 2020, In Press.
  • 21. Yingjun, D., Peihong, C., Xujun, L., Tongsheng, L., 2009. Comparative Study of Tribological Properties of Polyphenylene Sulfide (PPS), Polyethersulfone (PES), and Polysulfone (PSU). Journal of Macromolecular Science, Part B: Physics, 48, 269-281.
  • 22. Yan, S., Yahong, X., Yahui, H., Shoujun, W. 2020. Thermal, Mechanical and Tribological Properties of Sodium–montmorillonite- nanoparticle-reinforced Polyethersulfone and Polytetrafluoroethylene Ternary Composites. Friction, 1-18.
  • 23. Georgescu, C., Mihail, B., Lorena, D., 2014. Influence of Adding Materials in PBT on Tribological Behaviour. Materiale Plastice, 51(4), 350-354.
  • 24. Yi-Lan, Y., Du-Xin, L., Gao-Jie, S., Ruo-Yun, L. Xin, D. 2016. Improvement in the Tribological Properties of Polyamide 6: Talc, Glass Fiber, Graphite and Ultrahigh-molecular- weight Polyethylene. Journal of Thermoplastic Composite Materials, 29(4), 494-507.
  • 25. Autay, R., Missaoui, S., Mars, J., Dammak, F., 2019. Mechanical and Tribological Study of Short Glass Fiber-reinforced PA 66. Polymers and Polymer Composites, 27(9), 587-596.
  • 26. Anay, A., Kalyan, K.S., 2017. Friction and Wear Behaviour of Glass Fibre Reinforced Polymer Composite (GFRP) under Dry and Oil Lubricated Environmental Conditions. Materials Today: Proceedings, 4, 7285-7292.
  • 27. Sudhir, K., Panneerselvam, K., 2015. Research on Tribological Behaviors of Pure and Glass Fiber Reinforced Nylon 6 Composites against Polymer Disc. Journal of Material Science and Mechanical Engineering (JMSME). 2(6), 24-28.

Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer ve Polimer Kompozit Malzemelerin Belirlenmesi

Year 2020, Volume: 35 Issue: 4, 835 - 846, 31.12.2020
https://doi.org/10.21605/cukurovaummfd.867357

Abstract

Bu çalışma, elektrik sektöründe kontak kesicilerde aşınma direnci en iyi olan malzeme çiftini belirlemek için yapılmıştır. Aşınma deneyleri için pim-disk aşınma test cihazı kullanılmıştır. Bunun için çalışmada, disk malzemesi olarak %25 oranında uzun cam elyaf takviyeli ve %40 kalsiyum karbonat katkılı doymamış polyester esaslı termoset kompozit malzeme (%25CE+%40CaCO3+UPET) kullanılmıştır. Pim malzemeler olarak ise, katkısız poli-eter-sülfon (PES) polimeri, stiren-butadien-stiren elastomer katkılı ve %30 cam elyaf takviyeli poli-fenilen-eter (PPE+SBS+%30CE) kompoziti ve %15 cam elyaf takviyeli poli-butilen-tereftalat/poli-etilen-tereftalat karışımı kompozit (PBT/PET+%15CE) malzemeleri kullanılmıştır. Tribolojik deneyler, kuru kayma şartları altında ve oda sıcaklığında gerçekleştirilmiştir.
Deneyler, 0,707, 1,415, 2,123 ve 3,538 MPa basınç altında ve 0,5 m/s kayma hızında yapılmıştır. Aşınma ve sürtünme deneyleri sonucunda, malzemelerin sürtünme katsayısı ve spesifik aşınma hızları belirlenmiştir. Gerçekleştirilen deneyler sonucunda, en yüksek aşınma hızı katkısız PES polimerinde elde edilirken en düşük aşınma hızı ise PPE+SBS+%30CE kompozitinde elde edilmiştir. Gerçekleştirilen deneyler sonucunda kontak kesicilerde kullanmak için PPE+SBS+%30CE/%25CE+%40CaCO3+UPET termoset kompozit çifti en uygun malzeme çifti olarak belirlenmiştir.

References

  • 1. Chunguang, L., Rongfeng, L., Yang, S., Manyu, H., Taishan, C., Wei, X., Xiaofeng, Y., 2011. Mechanical and Tribological Properties of PTW/PTFE/PPS/PES Composites. Advanced Materials Research, 284-286, 205-209.
  • 2. Shicheng, Y., Yulin, Y., Laizhou, S., Xiaowen, Q., Yahong, X., Changsheng, D., 2018. Tribological Behavior of Graphite Oxide Reinforced Polyethersulfone Composite under Drying Sliding Condition. Polymer Composites, 39(7), 2320-2335.
  • 3. Jianbing, C., Qiang, G., Zhengping, Z., Xianli, S., Xiaoming, W., Chunlai, D., 2013. Thermal, Crystalline, and Tribological Properties of PEEK/PEI/PES Plastics Alloys. Journal of Applied Polymer Science, 2220-2226.
  • 4. Galal, S., Dilyus, C., Victor, T., Valerii, T. 2019. Effect of Formation Route on the Mechanical Properties of the Polyethersulfone Composites Reinforced with Glass Fibers. Polymers, 1364, 1-11.
  • 5. Zhen, Z., Laizhou, S., Yulin, Y. 2015. Tribological Behavior of Polyethersulfone- Reinforced Polytetrafluoroethylene Composite Under Dry Sliding Condition. Tribology International, 86, 17–27.
  • 6. Yuan-Qing, L., Sen-Sen, D., Li-Yuan, L., Fei, L., De-Bo, L., Ze-Kun, Z., Hong-Mei, X., Ning, H., Shao-Yun, F., 2019. Synergistic Effects of Short Glass Fiber/Short Carbon Fiber Hybrids on the Mechanical Properties of Polyethersulfone Composites, Polymer Composites, 40(S2), 1725-1731.
  • 7. Ye, Z., Yingshuang, S., Haibo, Z., Lianjun, D., Yunping, Z., Yuntao, H., Zhenghua, J., 2018. Friction and Wear Properties of Poly (Ether Sulfone) Containing Perfluorocarbon end Group. High Performance Polymers, 30(2), 247-253.
  • 8. Mohit, S., Jayashree, B., Kuldeep, S., 2011. Studies for Wear Property Correlation for Carbon Fabric-Reinforced PES Composites. Tribology Letters, 43, 267–273.
  • 9. Ze-Kun, Z., Sen-Sen, D., Fei, L., Hong-Mei, X., Yuan-Qing, L., Wei-Gang, Z., Ning, H., Shao-Yun, F., 2018. Mechanical and Tribological Properties of Short Glass Fiber and Short Carbon Fiber Reinforced Polyethersulfone Composites: A Comparative Study. Composites Communications, 8, 1–6.
  • 10. Aravinthan, G., Kale, D.D., 2005. Blends of Poly (Ethylene Terephthalate) and Poly (Butylene Terephthalate). Journal of Applied Polymer Science, 98, 75–82.
  • 11. Mohammadreza, N., Hazal, O., 2019. Development of PBT/Recycled‑PET Blends and the Influence of Using Chain Extender. Journal of Polymers and the Environment, 27, 1404–1417.
  • 12. Marek, S., 2004. Mechanical and Thermal Properties of PET/PBT Blends. Molecular Crystals and Liquid Crystals, 416(1), 209-215.
  • 13. Hazer, S., Mehmet, Ö., Ayse, A., 2018. Characterization of Poly (Ethylene Terephthalate)/Poly (Butylene Terephthalate) Based Nanocomposites Reinforced with Reduced Graphene Oxide. 1st International Symposium on Light Alloys and Composite Materials (ISLAC’18), 22-24 Mart, Karabük, 35-39.
  • 14. Mohammed, A.B.R., David, A.S., Joao, M., 2018. Property/Morphology Relationships in SEBS-Compatibilized HDPE/Poly (Phenylene Ether) Blends. Macromolecules, 51(16), 6513-6523.
  • 15. Edward, N.P., 2017. Poly (Phenylene Ether) Based Amphiphilic Block Copolymers. Polymers, 9(9), 433-457.
  • 16. Do Kyun, K., Kwang Ho, S., Chong Min, K., Soon Man, H., Dong Wook, C., 2015. Characterization of Compatibilized Blends of Nylon 66/poly(2,6-dimethyl-1,4-phenylene ether)/high-impact Polystyrene Filled with Phosphinate-based Flame Retardants: Mechanical Property, Rheological Behavior and Flame Retardancy. Journal of Fire Sciences, 33(5), 339-357.
  • 17. Alper, A., Teresa, M., Merve, A., Volker, A., 2020. Properties of Styrene–Maleic Anhydride Copolymer Compatibilized Polyamide 66/Poly (Phenylene Ether) Blends: Effect of Maleic Anhydride Concentration and Copolymer Content. Materials, 13, 1237-1253.
  • 18. Lo, D., Chiang, C., Chang, F., 1997. Reactive Compatibilization of PET and PPE Blends by Epoxy Couplers. J. Appl. Polym. Sci. 65(4), 739-753.
  • 19. Akkapeddi, M.K., 2014. Commercial Polymer Blends. In Polymer Blends Handbook, 2nd ed.; Utracki, L.A., Wilkie, C.A., Eds.; Springer: Dordrecht, 1733-1883.
  • 20. Harshavardhan, B., Ravishankar, R., Suresha, B., Srinivas, S., Arun, C.D.U., 2020. Influence of Short Carbon Fiber Content on Thermal Properties of Polyethersulfone Composites. Materials Today: Proceedings, Available online 16 October 2020, In Press.
  • 21. Yingjun, D., Peihong, C., Xujun, L., Tongsheng, L., 2009. Comparative Study of Tribological Properties of Polyphenylene Sulfide (PPS), Polyethersulfone (PES), and Polysulfone (PSU). Journal of Macromolecular Science, Part B: Physics, 48, 269-281.
  • 22. Yan, S., Yahong, X., Yahui, H., Shoujun, W. 2020. Thermal, Mechanical and Tribological Properties of Sodium–montmorillonite- nanoparticle-reinforced Polyethersulfone and Polytetrafluoroethylene Ternary Composites. Friction, 1-18.
  • 23. Georgescu, C., Mihail, B., Lorena, D., 2014. Influence of Adding Materials in PBT on Tribological Behaviour. Materiale Plastice, 51(4), 350-354.
  • 24. Yi-Lan, Y., Du-Xin, L., Gao-Jie, S., Ruo-Yun, L. Xin, D. 2016. Improvement in the Tribological Properties of Polyamide 6: Talc, Glass Fiber, Graphite and Ultrahigh-molecular- weight Polyethylene. Journal of Thermoplastic Composite Materials, 29(4), 494-507.
  • 25. Autay, R., Missaoui, S., Mars, J., Dammak, F., 2019. Mechanical and Tribological Study of Short Glass Fiber-reinforced PA 66. Polymers and Polymer Composites, 27(9), 587-596.
  • 26. Anay, A., Kalyan, K.S., 2017. Friction and Wear Behaviour of Glass Fibre Reinforced Polymer Composite (GFRP) under Dry and Oil Lubricated Environmental Conditions. Materials Today: Proceedings, 4, 7285-7292.
  • 27. Sudhir, K., Panneerselvam, K., 2015. Research on Tribological Behaviors of Pure and Glass Fiber Reinforced Nylon 6 Composites against Polymer Disc. Journal of Material Science and Mechanical Engineering (JMSME). 2(6), 24-28.
There are 27 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hüseyin Ünal Ünal This is me 0000-0003-0521-6647

Salih Hakan Yetgin Yetgin This is me 0000-0002-6068-9204

Publication Date December 31, 2020
Published in Issue Year 2020 Volume: 35 Issue: 4

Cite

APA Ünal, H. Ü., & Yetgin, S. H. Y. (2020). Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer ve Polimer Kompozit Malzemelerin Belirlenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(4), 835-846. https://doi.org/10.21605/cukurovaummfd.867357
AMA Ünal HÜ, Yetgin SHY. Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer ve Polimer Kompozit Malzemelerin Belirlenmesi. cukurovaummfd. December 2020;35(4):835-846. doi:10.21605/cukurovaummfd.867357
Chicago Ünal, Hüseyin Ünal, and Salih Hakan Yetgin Yetgin. “Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer Ve Polimer Kompozit Malzemelerin Belirlenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, no. 4 (December 2020): 835-46. https://doi.org/10.21605/cukurovaummfd.867357.
EndNote Ünal HÜ, Yetgin SHY (December 1, 2020) Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer ve Polimer Kompozit Malzemelerin Belirlenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 4 835–846.
IEEE H. Ü. Ünal and S. H. Y. Yetgin, “Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer ve Polimer Kompozit Malzemelerin Belirlenmesi”, cukurovaummfd, vol. 35, no. 4, pp. 835–846, 2020, doi: 10.21605/cukurovaummfd.867357.
ISNAD Ünal, Hüseyin Ünal - Yetgin, Salih Hakan Yetgin. “Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer Ve Polimer Kompozit Malzemelerin Belirlenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/4 (December 2020), 835-846. https://doi.org/10.21605/cukurovaummfd.867357.
JAMA Ünal HÜ, Yetgin SHY. Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer ve Polimer Kompozit Malzemelerin Belirlenmesi. cukurovaummfd. 2020;35:835–846.
MLA Ünal, Hüseyin Ünal and Salih Hakan Yetgin Yetgin. “Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer Ve Polimer Kompozit Malzemelerin Belirlenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35, no. 4, 2020, pp. 835-46, doi:10.21605/cukurovaummfd.867357.
Vancouver Ünal HÜ, Yetgin SHY. Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer ve Polimer Kompozit Malzemelerin Belirlenmesi. cukurovaummfd. 2020;35(4):835-46.