Research Article
BibTex RIS Cite

Akciğer Kanseri Tanısı ve Prognozunu İyileştirmek için Rastgele Orman Modelinin Kullanımı: Pilot Çalışma

Year 2024, Volume: 2 Issue: 2, 197 - 204, 30.12.2024

Abstract

IoT ağının sağlık sistemlerine uygulanmasına yönelik araştırma alanları ve çalışmaları giderek artmaktadır. Çalışmamız öncelikle Rastgele Orman (RF) modelinin akciğer kanseri veri kümelerini analiz etmede ve eğilimleri ve kalıpları tanımada etkinliğini vurgulamaktadır. Yapılan çalışma akciğer kanserinin farklı evrelerini tespit edebilmekte ve hastalığın ilerleyişi hakkında tahmin yürütebilmektedir. Çalışmamız, makine öğrenimi yaklaşımını kullanarak otomatik ve kişiselleştirilmiş teşhis sunabilir. Sağlık sisteminde önemli bir sorun olan akciğer kanserinin tespitinde rastgele orman algoritmasının etkinliği kullanılmış ve başarılı sonuçlar elde edilmiştir. Yaklaşımımız, bir karar destek yöntemi olarak sağlık profesyonellerine faydalı tavsiyeler sağlayabilir. Modelin etkinliğini ölçmek için doğruluk, kesinlik, duyarlılık ve F1 puanları gibi performans ölçümleri toplandı. Bu araştırma, akciğer kanseri hastalarının düşük hata ve yüksek hızda teşhis ve tedavisinde büyük potansiyele sahip olduğunu ortaya koymaktadır.
Anahtar Kelimeler: Akciğer kanseri tahmini, akciğer kanseri sınıflandırması, makine öğrenmesi, rastgele orman.

References

  • [1] Statista, “Lung cancer - Statistics & Facts” https://www.statista.com/topics/8909/lung-cancer-in- the-us/#topicOverview.
  • [2] Hurriyet, “Akciğer kanseri evreleri yaşam süresi ve tedavisi — hurriyet.com.tr.” https://www.hurriyet.com.tr/aile/akciger-kanseri- evreleri-yasam-suresi-ve-tedavisi-430064.
  • [3] A. F. Gazdar, P. A. Bunn, and J. D. Minna, “Small-cell lung cancer: what we know, what we need to know and the path forward,” Nature Reviews Cancer, vol. 17, no. 12, pp. 725–737, 2017.
  • [4] E. L. O’Dowd, T. M. McKeever, D. R. Baldwin, S. Anwar, H. A. Powell, J. E. Gibson, B. Iyen-Omofoman, and R. B. Hubbard, “What characteristics of primary care and patients are associated with early death in patients with lung cancer in the uk?,” Thorax, vol. 70, no. 2, pp. 161– 168, 2015.
  • [5] W. D. Travis, E. Brambilla, A. G. Nicholson, Y. Yatabe, J. H. Austin, M. B. Beasley, L. R. Chirieac, S. Dacic, E. Duhig, D. B. Flieder, et al. “The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification,” Journal of thoracic oncology, vol. 10, no. 9, pp. 1243–1260, 2015.
  • [6] Benveniste et al., “A gradient boosting model for lung cancer risk estimation using clinical data.” https://arxiv.org/abs/2308.12188, 2023.
  • [7] C. S. White et al., “Lung cancer screening with low- dose ct: a white paper of the society of thoracic radiology and the american college of radiology,” J. Thorac. Imaging, vol. 28, no. 5, pp. 295–306, 2013.
  • [8] S. Blandin Knight, P. A. Crosbie, H. Balata, J. Chudziak, T. Hussell, and C. Dive, “Progress and prospects of early detection in lung cancer,” Open biology, vol. 7, no. 9, p. 170070, 2017.
  • [9] R. Sharma, “Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050,” International Journal of Clinical Oncology, vol. 27, no. 4, pp. 665–675, 2022.
  • [10] S. Wankhade and S. Vigneshwari, “A novel hybrid deep learning method for early detection of lung cancer using neural networks, Healthcare Analytics, vol. 3, p. 100195, 2023.
  • [11] J. C. Laguna, M. Tagliamento, M. Lambertini, J. Hiznay, and L. Mezquita, “Tackling non–small cell lung cancer in young adults: From risk factors and genetic susceptibility to lung cancer profile and outcomes,” American Society of Clinical Oncology Educational Book, vol. 44, no. 3, p. e432488, 2024.
  • [12] A. Issanov, A. Aravindakshan, L. Puil, M. C. Tammemägi, S. Lam, and T. J. Dummer, “Risk prediction models for lung cancer in people who have never smoked: a protocol of a systematic review,” Diagnostic and Prognostic Research, vol. 8, no. 1, p. 3, 2024.
  • [13] S. Srivastava, N. Jayaswal, S. Kumar, P. K. Sharma, T. Behl, A. Khalid, S. Mohan, A. Najmi, K. Zoghebi, and H. A. Alhazmi, “Unveiling the potential of proteomic and genetic signatures for precision therapeutics in lung cancer management,” Cellular Signalling, vol. 113, p. 110932, 2024.
  • [14] S. N. A. Shah and R. Parveen, “An extensive review on lung cancer diagnosis using machine learning techniques on radiological data: state-of-the-art and perspectives,” Archives of Computational Methods in Engineering, vol. 30, no. 8, pp. 4917–4930, 2023.
  • [15] E. S. Mohamed, T. A. Naqishbandi, S. A. C. Bukhari, I. Rauf, V. Sawrikar, and A. Hussain, “A hybrid mental health prediction model using support vector machine, multilayer perceptron, and random forest algorithms,” Healthcare Analytics, vol. 3, p. 100185, 2023.
  • [16] S. Khandakar, M. A. Al Mamun, M. M. Islam, K. Hossain, M. M. H. Melon, and M. S. Javed, “Unveiling early detection and prevention of cancer: Machine learning and deep learning approaches,” Educational Administration: Theory and Practice, vol. 30, no. 5, pp. 14614–14628, 2024.
  • [17] M. F. Kabir, T. Chen, and S. A. Ludwig, “A performance analysis of dimensionality reduction algorithms in machine learning models for cancer prediction,” Healthcare Analytics, vol. 3, p. 100125, 2023.
  • [18] S. Padma, S. S. Kumar, and R. Manavalan, “Performance analysis for classification in balanced and unbalanced data set,” in 2011 6th International Conference on Industrial and Information Systems, pp. 300–304, IEEE, 2011.
  • [19] M. Imran, H. U. R. Siddiqui, A. Raza, M. A. Raza, F. Rustam, and I. Ashraf, “A performance overview of machine learning-based defense strategies for advanced persistent threats in industrial control systems,” Computers & Security, vol. 134, p. 103445, 2023.
  • [20] H. T. Gayap and M. A. Akhloufi, “Deep machine learning for medical diagnosis, application to lung cancer detection: a review,” BioMedInformatics, vol. 4, no. 1, pp. 236–284, 2024.
  • [21] S. R. Quasar, R. Sharma, A. Mittal, M. Sharma, D. Agarwal, and I. de La Torre Díez, “Ensemble methods for computed tomography scan images to improve lung cancer detection and classification,” Multimedia Tools and Applications, vol. 83, no. 17, pp. 52867–52897, 2024.
  • [22] L. Bertolaccini, M. Casiraghi, C. Uslenghi, S. Maiorca, and L. Spaggiari, “Recent advances in lung cancer research: unravelling the future of treatment,” Updates in Surgery, pp. 1–12, 2024.
  • [23] M. L. Giger, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography. 3. automated detection of nodules in peripheral lung fields.,” Medical physics, vol. 15 2, pp. 158–66, 1988.
  • [24] Q. Li, F. Li, and K. Doi, “Computerized detection of lung nodules in thin-section ct images by use of selective enhancement filters and an automated rule-based classifier,” Acad. Radiol., vol. 15, pp. 165–175, Feb 2008.
  • [25] D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng, et al., “End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,” Nat. Med., vol. 25, no. 6, pp. 954–961, 2019.
  • [26] C. I. Henschke et al., “Early lung cancer action project: overall design and findings from baseline screening,” Lancet, vol. 354, no. 9173, pp. 99–105, 1999.
  • [27] D. R. Aberle et al., “National lung screening trial research team: baseline characteristics of participants in the randomized national lung screening trial,” J. Natl. Cancer Inst., vol. 102, no. 23, pp. 1771–1779, 2010.
  • [28] G. Chassagnon et al., “Differentiation of subsolid pulmonary nodules by use of histogram analysis in contrast-enhanced ct imaging,” Radiology, vol. 286, no. 3, pp. 1086–1096, 2018.
  • [29] Aslani et al., “Enhancing cancer prediction in challenging screen-detected incident lung nodules using time-series deep learning.” https://arxiv.org/abs/2203.16606, 2022.
  • [30] Breiman, L., “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
  • [31] “Lung Cancer Prediction — kaggle.com.” https://www.kaggle.com/datasets/thedevastator/cancer -patients-and-air-pollution-a-new-link/data.

Using the Random Forest Model to Improve Lung Cancer Diagnosis and Prognosis: A Pilot

Year 2024, Volume: 2 Issue: 2, 197 - 204, 30.12.2024

Abstract

There have been increasing research interests and efforts on the application of IoT network to healthcare systems. Our study primarily highlights the effectiveness of the Random Forest (RF) model in analyzing Lung cancer datasets and recognizing trends and patterns. Our study can detect different stages of lung cancer and predict the disease progression. Our work can offer automated and personalized diagnosis using a machine learning approach. The effectiveness of the random forest algorithm was used in the detection of lung cancer, which is an important problem area in the healthcare system, and successful results were obtained. Our approach can provide useful advice to healthcare professionals as a decision support method. Performance metrics such as accuracy, precision, recall and F1 scores were collected to measure the effectiveness of the model. This research has great potential in the diagnosis and treatment of lung cancer patients with low errors and fast speed.
Keywords: Lung cancer prediction, lung cancer classification, machine learning, random forest.

References

  • [1] Statista, “Lung cancer - Statistics & Facts” https://www.statista.com/topics/8909/lung-cancer-in- the-us/#topicOverview.
  • [2] Hurriyet, “Akciğer kanseri evreleri yaşam süresi ve tedavisi — hurriyet.com.tr.” https://www.hurriyet.com.tr/aile/akciger-kanseri- evreleri-yasam-suresi-ve-tedavisi-430064.
  • [3] A. F. Gazdar, P. A. Bunn, and J. D. Minna, “Small-cell lung cancer: what we know, what we need to know and the path forward,” Nature Reviews Cancer, vol. 17, no. 12, pp. 725–737, 2017.
  • [4] E. L. O’Dowd, T. M. McKeever, D. R. Baldwin, S. Anwar, H. A. Powell, J. E. Gibson, B. Iyen-Omofoman, and R. B. Hubbard, “What characteristics of primary care and patients are associated with early death in patients with lung cancer in the uk?,” Thorax, vol. 70, no. 2, pp. 161– 168, 2015.
  • [5] W. D. Travis, E. Brambilla, A. G. Nicholson, Y. Yatabe, J. H. Austin, M. B. Beasley, L. R. Chirieac, S. Dacic, E. Duhig, D. B. Flieder, et al. “The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification,” Journal of thoracic oncology, vol. 10, no. 9, pp. 1243–1260, 2015.
  • [6] Benveniste et al., “A gradient boosting model for lung cancer risk estimation using clinical data.” https://arxiv.org/abs/2308.12188, 2023.
  • [7] C. S. White et al., “Lung cancer screening with low- dose ct: a white paper of the society of thoracic radiology and the american college of radiology,” J. Thorac. Imaging, vol. 28, no. 5, pp. 295–306, 2013.
  • [8] S. Blandin Knight, P. A. Crosbie, H. Balata, J. Chudziak, T. Hussell, and C. Dive, “Progress and prospects of early detection in lung cancer,” Open biology, vol. 7, no. 9, p. 170070, 2017.
  • [9] R. Sharma, “Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050,” International Journal of Clinical Oncology, vol. 27, no. 4, pp. 665–675, 2022.
  • [10] S. Wankhade and S. Vigneshwari, “A novel hybrid deep learning method for early detection of lung cancer using neural networks, Healthcare Analytics, vol. 3, p. 100195, 2023.
  • [11] J. C. Laguna, M. Tagliamento, M. Lambertini, J. Hiznay, and L. Mezquita, “Tackling non–small cell lung cancer in young adults: From risk factors and genetic susceptibility to lung cancer profile and outcomes,” American Society of Clinical Oncology Educational Book, vol. 44, no. 3, p. e432488, 2024.
  • [12] A. Issanov, A. Aravindakshan, L. Puil, M. C. Tammemägi, S. Lam, and T. J. Dummer, “Risk prediction models for lung cancer in people who have never smoked: a protocol of a systematic review,” Diagnostic and Prognostic Research, vol. 8, no. 1, p. 3, 2024.
  • [13] S. Srivastava, N. Jayaswal, S. Kumar, P. K. Sharma, T. Behl, A. Khalid, S. Mohan, A. Najmi, K. Zoghebi, and H. A. Alhazmi, “Unveiling the potential of proteomic and genetic signatures for precision therapeutics in lung cancer management,” Cellular Signalling, vol. 113, p. 110932, 2024.
  • [14] S. N. A. Shah and R. Parveen, “An extensive review on lung cancer diagnosis using machine learning techniques on radiological data: state-of-the-art and perspectives,” Archives of Computational Methods in Engineering, vol. 30, no. 8, pp. 4917–4930, 2023.
  • [15] E. S. Mohamed, T. A. Naqishbandi, S. A. C. Bukhari, I. Rauf, V. Sawrikar, and A. Hussain, “A hybrid mental health prediction model using support vector machine, multilayer perceptron, and random forest algorithms,” Healthcare Analytics, vol. 3, p. 100185, 2023.
  • [16] S. Khandakar, M. A. Al Mamun, M. M. Islam, K. Hossain, M. M. H. Melon, and M. S. Javed, “Unveiling early detection and prevention of cancer: Machine learning and deep learning approaches,” Educational Administration: Theory and Practice, vol. 30, no. 5, pp. 14614–14628, 2024.
  • [17] M. F. Kabir, T. Chen, and S. A. Ludwig, “A performance analysis of dimensionality reduction algorithms in machine learning models for cancer prediction,” Healthcare Analytics, vol. 3, p. 100125, 2023.
  • [18] S. Padma, S. S. Kumar, and R. Manavalan, “Performance analysis for classification in balanced and unbalanced data set,” in 2011 6th International Conference on Industrial and Information Systems, pp. 300–304, IEEE, 2011.
  • [19] M. Imran, H. U. R. Siddiqui, A. Raza, M. A. Raza, F. Rustam, and I. Ashraf, “A performance overview of machine learning-based defense strategies for advanced persistent threats in industrial control systems,” Computers & Security, vol. 134, p. 103445, 2023.
  • [20] H. T. Gayap and M. A. Akhloufi, “Deep machine learning for medical diagnosis, application to lung cancer detection: a review,” BioMedInformatics, vol. 4, no. 1, pp. 236–284, 2024.
  • [21] S. R. Quasar, R. Sharma, A. Mittal, M. Sharma, D. Agarwal, and I. de La Torre Díez, “Ensemble methods for computed tomography scan images to improve lung cancer detection and classification,” Multimedia Tools and Applications, vol. 83, no. 17, pp. 52867–52897, 2024.
  • [22] L. Bertolaccini, M. Casiraghi, C. Uslenghi, S. Maiorca, and L. Spaggiari, “Recent advances in lung cancer research: unravelling the future of treatment,” Updates in Surgery, pp. 1–12, 2024.
  • [23] M. L. Giger, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography. 3. automated detection of nodules in peripheral lung fields.,” Medical physics, vol. 15 2, pp. 158–66, 1988.
  • [24] Q. Li, F. Li, and K. Doi, “Computerized detection of lung nodules in thin-section ct images by use of selective enhancement filters and an automated rule-based classifier,” Acad. Radiol., vol. 15, pp. 165–175, Feb 2008.
  • [25] D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng, et al., “End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,” Nat. Med., vol. 25, no. 6, pp. 954–961, 2019.
  • [26] C. I. Henschke et al., “Early lung cancer action project: overall design and findings from baseline screening,” Lancet, vol. 354, no. 9173, pp. 99–105, 1999.
  • [27] D. R. Aberle et al., “National lung screening trial research team: baseline characteristics of participants in the randomized national lung screening trial,” J. Natl. Cancer Inst., vol. 102, no. 23, pp. 1771–1779, 2010.
  • [28] G. Chassagnon et al., “Differentiation of subsolid pulmonary nodules by use of histogram analysis in contrast-enhanced ct imaging,” Radiology, vol. 286, no. 3, pp. 1086–1096, 2018.
  • [29] Aslani et al., “Enhancing cancer prediction in challenging screen-detected incident lung nodules using time-series deep learning.” https://arxiv.org/abs/2203.16606, 2022.
  • [30] Breiman, L., “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
  • [31] “Lung Cancer Prediction — kaggle.com.” https://www.kaggle.com/datasets/thedevastator/cancer -patients-and-air-pollution-a-new-link/data.
There are 31 citations in total.

Details

Primary Language English
Subjects Data Engineering and Data Science
Journal Section Research Articles
Authors

Esin Bilgin

Michelle M. Zhu This is me

Publication Date December 30, 2024
Submission Date November 28, 2024
Acceptance Date December 13, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

IEEE E. Bilgin and M. M. Zhu, “Using the Random Forest Model to Improve Lung Cancer Diagnosis and Prognosis: A Pilot”, CÜMFAD, vol. 2, no. 2, pp. 197–204, 2024.