Farklı Piroliz Maksimum Sıcaklıklarında Üretilen Biyokömür/Faz Değiştiren Malzeme Kompozitlerinin Enerji Depolama Kapasitelerinin Karşılaştırılması
Year 2024,
Volume: 2 Issue: 2, 228 - 235, 30.12.2024
Bedrettin Coşkun
,
Ümit Nazlı Temel
Abstract
Biyokömürler, yüksek yüzey alanı ve gözenekli yapıları sayesinde, FDM/biyokömür kompozitleri için etkili bir taban malzemesi olarak değerlendirilebilirler. Bu şekilde üretilen şekil kararlı FDM/biyokömür kompozitleri, enerji depolama ve termal koruma gibi farklı uygulamalarda kullanılma potansiyeline sahiptirler. Piroliz yoluyla üretilen biyokömürlerin maksimum yüzey alanı, gözenek boyutları ve dağılımları; maksimum piroliz sıcaklığı, ısıtma hızı ve bekletme süresi gibi parametrelere göre değişmektedir. Bu çalışmada maksimum piroliz sıcaklığının biyokömür gözenekliliği üzerindeki etkileri, gözenekler içerisine emdirilen FDM miktarı açısından değerlendirilmiştir. Bu amaçla doğadan elde edilen kavak talaşından, farklı piroliz maksimum sıcaklıkları kullanılarak biyokömürler elde edilmiştir. Elde edilen biyokömür gözeneklerine vakum emdirme yöntemiyle FDM emdirilerek Biyokömür/FDM kompozitleri oluşturulmuştur. Biyokömür/FDM kompozitlerinin ısı depolama kapasiteleri Diferansiyel Taramalı Kalorimetre ile belirlenmiştir. Elde edilen bulgular, piroliz maksimum sıcaklığının düşmesi ile Biyokömür/FDM kompozitlerinin enerji depolama kapasitelerinin arttığını göstermiştir.
Thanks
Bu makale, Yükseköğretim Kurulu Başkanlığı Ulusal Tez Merkezine kayıtlı 885229 numaralı ''Gözenekli Fonksiyonel Kompozit Malzemelerin Yapı Bileşenlerindeki Termal Enerji Depolama Uygulamalarının İncelenmesi'' başlıklı doktora tezinden türetilmiştir.
References
- [1]Wang, S. M., Matiašovský, P., Mihálka, P. and Lai, C. M.(2018). Experimental investigation of the daily thermalperformance of a mPCM honeycomb wallboard. Energy andBuildings, 159, 419-425,doi.org/10.1016/j.enbuild.2017.10.080.
- [2] Yao, C., Kong, X., Li, Y., Du, Y. and Qi, C. (2018). Numerical andexperimental research of cold storage for a novel expandedperlite-based shape-stabilized phase change materialwallboard used in building. Energy conversion andmanagement, 155, 20-31,doi.org/10.1016/j.enconman.2017.10.052.
- [3]Fabiani, C., Santini, C., Barbanera, M., Giannoni, T., Rubino,G., Cotana, F., and Pisello, A. L. (2023). Phase changematerials-impregnated biomass for energy efficiency inbuildings: Innovative material production and multiscalethermophysical characterization. Journal of Energy Storage,58, 106223, doi.org/10.1016/j.est.2022.106223.
- [4]Jeon, J., Park, J. H., Wi, S., Yang, S., Ok, Y. S., and Kim, S. (2019). Characterization of biocomposite using coconut oilimpregnated biochar as latent heat storage insulation. Chemosphere, 236, 124269, doi.org/10.1016/j.chemosphere.2019.06.239.
- [5] Atinafu, D. G., Yun, B. Y., Wi, S., Kang, Y. and Kim, S. (2021). Acomparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. EnvironmentalResearch, 195, 110853,doi.org/10.1016/j.envres.2021.110853.
- [6] Chen, Y., Cui, Z., Ding, H., Wan, Y., Tang, Z., and Gao, J. (2018).Cost-Effective Biochar Produced from Agricultural Residuesand Its Application for Preparation of High PerformanceForm-Stable Phase Change Material via Simple Method.International Journal of Molecular Sciences, 19(10),doi.org/10.3390/ijms19103055.
- [7]Lv, L., Huang, S. and Zhou, H. (2024). Effect of introducingchemically activated biochar as support material on thermalproperties of different organic phase change materials. Solar Energy Materials and Solar Cells, 264, 112617,doi.org/10.1016/j.solmat.2023.112617.
- [8]Atinafu, D. G., Jin Chang, S., Kim, K.-H. and Kim, S. (2020).Tuning surface functionality of standard biochars and theresulting uplift capacity of loading/energy storage fororganic phase change materials. Chemical EngineeringJournal, 394, 125049, doi.org/10.1016/j.cej.2020.125049.
- [9]Xiong, T., Ok, Y. S., Dissanayake, P. D., Tsang, D. C. W., Kim,S., Kua, H. W. and Shah, K. W. (2022). Preparation andthermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stembiochar microparticles. Science of The Total Environment,827, 154341, doi.org/10.1016/j.scitotenv.2022.154341.
- [10] Jeon, J., Park, J. H., Wi, S., Yang, S., Ok, Y. S., & Kim, S. (2019).Latent heat storage biocomposites of phase changematerial-biochar as feasible eco-friendly building materials.Environmental Research, 172, 637-648,doi.org/10.1016/j.envres.2019.01.058.
- [11] Zhao, P.-P., Deng, C., Zhao, Z.-Y., Lu, P., He, S. and Wang, Y.-Z.(2021). Hypophosphite tailored graphitized hierarchicalporous biochar toward highly efficient solar thermal energyharvesting and stable Storage/Release. ChemicalEngineering Journal, 420, 129942,doi.org/10.1016/j.cej.2021.129942.
- [12]Zhang, N., Pan, X., Zhang, Z., Yuan, Y., Sultan, M. and Attia,S.(2024). Carbonated balsa-based shape-stable phasechange materials with photothermal conversion andapplication in greenhouse. Solar Energy Materials and SolarCells, 266, 112699, doi.org/10.1016/j.solmat.2024.112699.
- [13]Muzyka, R., Misztal, E., Hrabak, J., Banks, S. W. and Sajdak,M.(2023). Various biomass pyrolysis conditions influencethe porosity and pore size distribution of biochar. Energy,263, 126128, doi.org/10.1016/j.energy.2022.126128.
Comparison of Energy Storage Capacities of Biochar/Phase Change Material Composites Produced at Different Pyrolysis Maximum Temperatures
Year 2024,
Volume: 2 Issue: 2, 228 - 235, 30.12.2024
Bedrettin Coşkun
,
Ümit Nazlı Temel
Abstract
Biochars can be considered as effective base materials for PCM/biochar composites due to their high surface area and porous structures. Shape-stable PCM/biochar composites produced in this way have the potential to be used in various applications such as energy storage and thermal protection. The maximum surface area, pore sizes, and distributions of biochars produced through pyrolysis vary according to parameters such as maximum pyrolysis temperature, heating rate, and holding time. In this study, the effects of maximum pyrolysis temperature on biochar porosity were evaluated in terms of the amount of PCM impregnated into the pores. For this purpose, biochars were obtained from naturally sourced poplar sawdust using different pyrolysis maximum temperatures. Biochar/PCM composites were created by impregnating PCM into the biochar pores using the vacuum impregnation method. The heat storage capacities of Biochar/PCM composites were determined by Differential Scanning Calorimetry. The results showed that as the pyrolysis maximum temperature decreased, the energy storage capacities of Biochar/PCM composites increased.
References
- [1]Wang, S. M., Matiašovský, P., Mihálka, P. and Lai, C. M.(2018). Experimental investigation of the daily thermalperformance of a mPCM honeycomb wallboard. Energy andBuildings, 159, 419-425,doi.org/10.1016/j.enbuild.2017.10.080.
- [2] Yao, C., Kong, X., Li, Y., Du, Y. and Qi, C. (2018). Numerical andexperimental research of cold storage for a novel expandedperlite-based shape-stabilized phase change materialwallboard used in building. Energy conversion andmanagement, 155, 20-31,doi.org/10.1016/j.enconman.2017.10.052.
- [3]Fabiani, C., Santini, C., Barbanera, M., Giannoni, T., Rubino,G., Cotana, F., and Pisello, A. L. (2023). Phase changematerials-impregnated biomass for energy efficiency inbuildings: Innovative material production and multiscalethermophysical characterization. Journal of Energy Storage,58, 106223, doi.org/10.1016/j.est.2022.106223.
- [4]Jeon, J., Park, J. H., Wi, S., Yang, S., Ok, Y. S., and Kim, S. (2019). Characterization of biocomposite using coconut oilimpregnated biochar as latent heat storage insulation. Chemosphere, 236, 124269, doi.org/10.1016/j.chemosphere.2019.06.239.
- [5] Atinafu, D. G., Yun, B. Y., Wi, S., Kang, Y. and Kim, S. (2021). Acomparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. EnvironmentalResearch, 195, 110853,doi.org/10.1016/j.envres.2021.110853.
- [6] Chen, Y., Cui, Z., Ding, H., Wan, Y., Tang, Z., and Gao, J. (2018).Cost-Effective Biochar Produced from Agricultural Residuesand Its Application for Preparation of High PerformanceForm-Stable Phase Change Material via Simple Method.International Journal of Molecular Sciences, 19(10),doi.org/10.3390/ijms19103055.
- [7]Lv, L., Huang, S. and Zhou, H. (2024). Effect of introducingchemically activated biochar as support material on thermalproperties of different organic phase change materials. Solar Energy Materials and Solar Cells, 264, 112617,doi.org/10.1016/j.solmat.2023.112617.
- [8]Atinafu, D. G., Jin Chang, S., Kim, K.-H. and Kim, S. (2020).Tuning surface functionality of standard biochars and theresulting uplift capacity of loading/energy storage fororganic phase change materials. Chemical EngineeringJournal, 394, 125049, doi.org/10.1016/j.cej.2020.125049.
- [9]Xiong, T., Ok, Y. S., Dissanayake, P. D., Tsang, D. C. W., Kim,S., Kua, H. W. and Shah, K. W. (2022). Preparation andthermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stembiochar microparticles. Science of The Total Environment,827, 154341, doi.org/10.1016/j.scitotenv.2022.154341.
- [10] Jeon, J., Park, J. H., Wi, S., Yang, S., Ok, Y. S., & Kim, S. (2019).Latent heat storage biocomposites of phase changematerial-biochar as feasible eco-friendly building materials.Environmental Research, 172, 637-648,doi.org/10.1016/j.envres.2019.01.058.
- [11] Zhao, P.-P., Deng, C., Zhao, Z.-Y., Lu, P., He, S. and Wang, Y.-Z.(2021). Hypophosphite tailored graphitized hierarchicalporous biochar toward highly efficient solar thermal energyharvesting and stable Storage/Release. ChemicalEngineering Journal, 420, 129942,doi.org/10.1016/j.cej.2021.129942.
- [12]Zhang, N., Pan, X., Zhang, Z., Yuan, Y., Sultan, M. and Attia,S.(2024). Carbonated balsa-based shape-stable phasechange materials with photothermal conversion andapplication in greenhouse. Solar Energy Materials and SolarCells, 266, 112699, doi.org/10.1016/j.solmat.2024.112699.
- [13]Muzyka, R., Misztal, E., Hrabak, J., Banks, S. W. and Sajdak,M.(2023). Various biomass pyrolysis conditions influencethe porosity and pore size distribution of biochar. Energy,263, 126128, doi.org/10.1016/j.energy.2022.126128.