Research Article
BibTex RIS Cite

Altın standart test yokluğunda tanısal doğruluk ölçütlerinin Bayesci yaklaşım ile tahmini: Helicobacter Pylori verisi uygulaması

Year 2021, , 1548 - 1557, 30.12.2021
https://doi.org/10.17826/cumj.1003633

Abstract

Amaç: Tanı testleri, hasta ve sağlıklı bireylerin oluşturduğu heterojen bir kitlede bireyin gerçek durumunu ortaya çıkarmak amacıyla kullanılır. Bu çalışmada, altın standart test yokluğunda, Bayesci yaklaşım ile ilgilenilen tanı testine ait doğruluk ölçütlerini elde etmek ve diğer yöntemlerle karşılaştırması amaçlanmıştır.
Gereç ve Yöntem: Helicobacter Pylori tanısında; HpSA, Kültür, CLO, Histoloji ve PCR gibi farklı testler kullanılmaktadır. Bu çalışmada, Bayesci yaklaşımla parametre tahminlerinin elde edilmesinde önsel bilgileri (prevalans, duyarlılık vs.) içeren modeller oluşturulmuştur. Çalışmada bu tanı testlerinin doğruluklarının saptanmasında ortaya çıkabilen kesin olmayan altın standart yanlılığının düzeltilmesi amacıyla Bayesci yöntemler kullanılmıştır. Bu amaçla H. Pylori ile ilgili bir uzmanlık tezine ait veriler WinBUGS ve R paket programları yardımıyla analiz edilmiştir.
Bulgular: Bayesci çıkarsama yapıldığında hastalık ile ilgili prevalans bilgisi ve önsel bilgi dikkate alındığından tanı testine ait pozitif ve negatif kestirim değerlerine ait sonuçların daha güvenilir olduğu saptanmıştır. Kestirim değerlerine benzer şekilde duyarlılık ve seçicilik değerleri içinde güvenilir sonuçlar elde edilmiştir. Bayesci yaklaşım ile elde edilen güvenilir aralık önsel bilgi kullanıldığında daralmıştır.
Sonuç: Altın standardın olmadığı durumlarda prevalans gibi önsel bilgileri kullanan Bayesci yaklaşımlar klinisyenler için tanıda kolaylık sağlayacaktır.

References

  • Reid MC, Lachs MS, Feinstein AR. Use of methodological standards in diagnostic test research: getting better but still not good. JAMA. 1995;274:645-51.
  • Genç Y. Tanı Testi Çalışmalarında Metodolojik Standartların Kullanılması, Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2003;56:259-64
  • Hadgu A. “The discrepancy in discrepant analysis.” Lancet. 1996;348:592-93
  • Zhou XH, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. Wiley. 2002.
  • Joseph L, Gyorkos T W, Coupal L. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol. 1995;141:263-72.
  • Dendukuri N, Rahme E, Bélisle P, Joseph L. Bayesian sample size determination for prevalence and diagnostic test studies in the absence of a gold standard test. Biometrics. 2004;60:388-97.
  • Dendukuri N, Joseph L. Bayesian approaches to modeling the conditional dependence between multiple diagnostic tests. Biometrics. 2001;158-67.
  • Dendukuri N, Rahme E, Bélisle P, Joseph L. Bayesian sample size determination for prevalence and diagnostic test studies in the absence of a gold standard test. Biometrics. 2004;60:388-97.
  • Joseph L, Gyorkos, TW. Inferences for Likelihood Ratios in the Absence of a" Gold Standard". Med Decis Making. 1996;16:412-17.
  • Lesaffre E, Lawson AB. Bayesian biostatistics. John Wiley&Sons. 2012
  • Broemeling LD. Bayesian biostatistics and diagnostic medicine. CRC Press. 2007.
  • Bayes T. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philosophical transactions of the Royal Society of London. 1763;53:370-418.
  • Ashby D. Bayesian statistics in medicine: a 25 year review. Stat Med. 2006; 25:3589-3631.
  • Clayton D, Kaldor J. Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics. 1987;671-81.
  • Broemeling LD. Bayesian methods for measures of agreement. CRC Press. 2009.
  • Koçak F. "Helicobacter pylori infeksiyonunda yeni bir tanı yöntemi olan stool antijen testinin değerlendirilmesi". Ç.Ü. Tıpta Uzmanlık Tezi. 2002.
  • WinBUGS, MRC Biostatistics Unit Cambridge Biomedical Campus. Cambridge Institute of Public Health.
  • IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY:IBM Corp. IBM Corp. Released. 2011.
  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.
  • http://www.worldgastroenterology.org/assets/downloads/en/pdf/guidelines/11_helicobacter_pylori_developing_countries_en.pdf. World gastroenterology Organization
  • Ünal İ. "Tanı Testlerinin Değerlendirilmesinde Kullanılan Standartlar ve Analitik Yöntemler". Ç.Ü. Sağlık Bilimleri Enstitüsü, Doktora Tezi Adana, 2010
  • Burgut R, Bozdemir N, Erdoğan F, Sertdemir Y, Unal I. Approaches to determining the value of a new test or tests in Diagnostic medicine when there is no gold standard. Invited presentation on the 4rt conference of the EMR of the International Biometric Society, Eilat, Israel, January 23-25, 2007.
  • Burgut R, Biostatistical Approaches to Determining the Value of a New Test or Tests in Diagnostic Medicine: An example of Helicobacter Pylori Infection. WCMCQ, Qatar October 10, 2007.
  • Goetghebeur E, et al. Diagnostic test analyses in search of their gold standard: latent class analyses with random effects. Stat Methods Med. 2000;9:231-48.
  • Shapiro David E. The interpretation of diagnostic tests. Stat Methods Med Res. 1999;82:113-34.
  • Dorny, Pierre, et al. A Bayesian approach for estimating values for prevalence and diagnostic test characteristics of porcine cysticercosis. Int J Parasitol. 2004;34:569-76.
  • Gilks WR, et al. Modelling complexity: applications of Gibbs sampling in medicine. Journal of the Royal Statistical Society. Series B (Methodological). 1993;39-52.
  • Joseph, Lawrence Gyorkos, Theresa W, Coupal Louis. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol. 1995;141(3):263-72.
  • Altman DG, Bland JM. Statistics Notes: Diagnostic tests 2: predictive values. BMJ. 1994;309:102.
  • Dendukuri N, Bélisle P, Joseph L. Bayesian sample size for diagnostic test studies in the absence of a gold standard: Comparing identifiable with non‐identifiable models. Stat Med. 2010;29:2688-97.

Bayesian estimation of diagnostic accuracy measures when there is no gold standard: a Helicobacter Pylori data application

Year 2021, , 1548 - 1557, 30.12.2021
https://doi.org/10.17826/cumj.1003633

Abstract

Purpose: Diagnostic tests are used for defining the disease status of person in a heterogeneous population which consists of healthy and diseased people. In this study, it was aimed to obtain the accuracy measures of the diagnostic test with the Bayesian approach when there was no gold standard test, and to compare it with other methods.
Materials and Methods: In the diagnosis of Helicobacter Pylori, different tests are used such as HpSA, Culture, CLO, Histology and PCR. In this study, models containing a priori information (prevalence, sensitivity, etc.) were created to obtain parameter estimations with the Bayesian approach. Bayesian methods were used to correct the imperfect gold standard bias that may occur in determining the accuracy of these diagnostic tests. For this purpose, the data of a medical thesis on H. Pylori were analyzed with the help of WinBUGS and R package programs.
Results: When Bayesian inference is made, the results of the positive and negative predictive values of the diagnostic test were found to be more reliable, since the prevalence and a priori information about the disease were taken into account. Similar to the predictive values, reliable results were obtained for sensitivity and specificity values. The credible interval obtained by using Bayesian approach is narrowed when a prior information is used.
Conclusion: In the absence of a gold standard, Bayesian approaches using a prior information such as prevalence and diagnostic test information could facilitate diagnosis for clinicians.

References

  • Reid MC, Lachs MS, Feinstein AR. Use of methodological standards in diagnostic test research: getting better but still not good. JAMA. 1995;274:645-51.
  • Genç Y. Tanı Testi Çalışmalarında Metodolojik Standartların Kullanılması, Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2003;56:259-64
  • Hadgu A. “The discrepancy in discrepant analysis.” Lancet. 1996;348:592-93
  • Zhou XH, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. Wiley. 2002.
  • Joseph L, Gyorkos T W, Coupal L. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol. 1995;141:263-72.
  • Dendukuri N, Rahme E, Bélisle P, Joseph L. Bayesian sample size determination for prevalence and diagnostic test studies in the absence of a gold standard test. Biometrics. 2004;60:388-97.
  • Dendukuri N, Joseph L. Bayesian approaches to modeling the conditional dependence between multiple diagnostic tests. Biometrics. 2001;158-67.
  • Dendukuri N, Rahme E, Bélisle P, Joseph L. Bayesian sample size determination for prevalence and diagnostic test studies in the absence of a gold standard test. Biometrics. 2004;60:388-97.
  • Joseph L, Gyorkos, TW. Inferences for Likelihood Ratios in the Absence of a" Gold Standard". Med Decis Making. 1996;16:412-17.
  • Lesaffre E, Lawson AB. Bayesian biostatistics. John Wiley&Sons. 2012
  • Broemeling LD. Bayesian biostatistics and diagnostic medicine. CRC Press. 2007.
  • Bayes T. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philosophical transactions of the Royal Society of London. 1763;53:370-418.
  • Ashby D. Bayesian statistics in medicine: a 25 year review. Stat Med. 2006; 25:3589-3631.
  • Clayton D, Kaldor J. Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics. 1987;671-81.
  • Broemeling LD. Bayesian methods for measures of agreement. CRC Press. 2009.
  • Koçak F. "Helicobacter pylori infeksiyonunda yeni bir tanı yöntemi olan stool antijen testinin değerlendirilmesi". Ç.Ü. Tıpta Uzmanlık Tezi. 2002.
  • WinBUGS, MRC Biostatistics Unit Cambridge Biomedical Campus. Cambridge Institute of Public Health.
  • IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY:IBM Corp. IBM Corp. Released. 2011.
  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.
  • http://www.worldgastroenterology.org/assets/downloads/en/pdf/guidelines/11_helicobacter_pylori_developing_countries_en.pdf. World gastroenterology Organization
  • Ünal İ. "Tanı Testlerinin Değerlendirilmesinde Kullanılan Standartlar ve Analitik Yöntemler". Ç.Ü. Sağlık Bilimleri Enstitüsü, Doktora Tezi Adana, 2010
  • Burgut R, Bozdemir N, Erdoğan F, Sertdemir Y, Unal I. Approaches to determining the value of a new test or tests in Diagnostic medicine when there is no gold standard. Invited presentation on the 4rt conference of the EMR of the International Biometric Society, Eilat, Israel, January 23-25, 2007.
  • Burgut R, Biostatistical Approaches to Determining the Value of a New Test or Tests in Diagnostic Medicine: An example of Helicobacter Pylori Infection. WCMCQ, Qatar October 10, 2007.
  • Goetghebeur E, et al. Diagnostic test analyses in search of their gold standard: latent class analyses with random effects. Stat Methods Med. 2000;9:231-48.
  • Shapiro David E. The interpretation of diagnostic tests. Stat Methods Med Res. 1999;82:113-34.
  • Dorny, Pierre, et al. A Bayesian approach for estimating values for prevalence and diagnostic test characteristics of porcine cysticercosis. Int J Parasitol. 2004;34:569-76.
  • Gilks WR, et al. Modelling complexity: applications of Gibbs sampling in medicine. Journal of the Royal Statistical Society. Series B (Methodological). 1993;39-52.
  • Joseph, Lawrence Gyorkos, Theresa W, Coupal Louis. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol. 1995;141(3):263-72.
  • Altman DG, Bland JM. Statistics Notes: Diagnostic tests 2: predictive values. BMJ. 1994;309:102.
  • Dendukuri N, Bélisle P, Joseph L. Bayesian sample size for diagnostic test studies in the absence of a gold standard: Comparing identifiable with non‐identifiable models. Stat Med. 2010;29:2688-97.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research
Authors

Yusuf Kemal Arslan 0000-0003-1308-8569

Publication Date December 30, 2021
Acceptance Date October 4, 2021
Published in Issue Year 2021

Cite

MLA Arslan, Yusuf Kemal. “Altın Standart Test yokluğunda tanısal doğruluk ölçütlerinin Bayesci yaklaşım Ile Tahmini: Helicobacter Pylori Verisi Uygulaması”. Cukurova Medical Journal, vol. 46, no. 4, 2021, pp. 1548-57, doi:10.17826/cumj.1003633.