Predictive values of lamina cribrosa depth and ganglion cell complex thickness in early diagnosis of glaucoma
Year 2022,
, 259 - 265, 31.03.2022
Şule Barman Kakil
,
Elif Erdem
,
İbrahim İnan Harbiyeli
,
Meltem Yağmur
Abstract
Purpose: Evaluation of ganglion cell complex measurement and the use of parameters of lamina cribrosa depth in early diagnosis and progression of patients with suspected glaucoma.
Materials and Methods: Measurements were taken with Heidelberg Spectralis Spectral Domain Optical Coherence Tomography from patients in both groups. Ganglion cell complex thicknesses measured with segmentation analysis. Lamina cribrosa depths were measured by using optic nerve head images of the glaucoma suspected group and the control group.
Results: Thirty-one glaucoma suspect patients and 42 healthy individuals were included in the study. The thickness of the ganglion cell layer was 11.46 in the glaucoma suspect group, and it was 12.19 in the control group. Mean lamina cribrosa depth was 579.3 in the glaucoma suspected group and 399.62 in the control group.
Conclusion: Optical coherence tomography helps ophthalmologists for the diagnosis and follow-up of glaucoma patients, and non-invasively measured ganglion cell layer and lamina cribrosa depth may be a guide for early diagnosis. In this study, lamina cribrosa depth difference is more significant in the glaucoma suspect group so this parameter can be used in early diagnosis.
References
- NICE. Glaucoma: Diagnosis and Management. London, National Institute for Health and Care Excellence, 2017.
- Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al. Optical coherence tomography. Science. 1991;254:1178–81.
- Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna R et al. Detection of glaucoma progression with stratus oct retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci. 2009;50:5741–48.
- Lucy KA, Wollstein G. Structural, and functional evaluations for the early detection of glaucoma. Expert Rev Ophthalmol. 2016;11:367–76.
- Hodapp E, Parrish RK, Anderson DR. Clinical Decisions in Glaucoma. St. Louis, Mosby, 1993.
- European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition. Br J Ophthalmol. 2017;101:130-95.
- Chang RT, Singh K. Glaucoma suspect: diagnosis and management. Asia Pac J Ophthalmol (Phila). 2016;5:32‐7.
- Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. ii. the site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.
- Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF. Deformation of the lamina cribrosa and anterior scleral canal wall ı̇n early experimental glaucoma. Invest Ophthalmol Vis Sci. 2003;44:623–37.
- Yang H, Downs JC, Bellezza AJ, Thompson H, Burgoyne CF. 3-D Histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest Ophthalmol Vis Sci. 2007;48:5068–84.
- Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol. 1974;13:771–83.
- Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16:426–41.
- Minckler DS, Tso Mo. Light microscopic, autoradiographic study of axoplasmic transport in the normal rhesus optic nerve head. Am J Ophthalmol. 1976;82:1–15.
- Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 2000;19:297–321.
- Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of iop-related stress and strain ı̇n the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005; 24:39–73.
- Kita Y, Kita R, Takeyama A, Takagi S, Nishimura C, Tomita G. Ability of optical coherence tomography-determined ganglion cell complex thickness to total retinal thickness ratio to diagnose glaucoma. J Glaucoma. 2013; 22:757-62.
- Kita Y, Kita R, Nitta A, Nishimura C, Tomita G. Glaucomatous eye macular ganglion cell complex thickness and its relation to temporal circumpapillary retinal nerve fiber layer thickness. Jpn J Ophthalmol. 2011;55:228-34.
- Rao Hl, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117:1692-99.
- Huang JY, Pekmezci M, Mesiwala N, Kao A, Lin S. Diagnostic power of optic disc morphology, peripapillaly retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain coherence tomography. J Glaucoma. 2011;20:87-94.
- Garas A, Vargha P, Hollo G. Diagnostic accuracy of nevre fiber layer, macular thickness and optic disc measurements made with the rtvue-100 optical coherence tomography to detect glaucoma. Eye (Lond). 2011;25:57-65.
- Kim NR, Hong S, Kim JH, Rho SS, Seong GJ, Kim CY. Comparison of macular ganglion cell complex thickness by fourier-domain oct in normal tension glaucoma and primary open-angle glaucoma. J Glaucoma. 2013;22:133-9.
- Park SC, Brumm J, Furlanetto Rl et al. Lamina cribrosa depth in different stages of glaucoma. Invest Ophthalmol Vis Sci. 2015;56:2059–64.
- Lee EJ, Kim TW, Kim M, Kim H. Influence of Lamina cribrosa thickness and depth on the rate of progressive retinal nerve fiber layer thinning. Ophthalmology. 2015;122:721–9.
- Bussel II, Wollstein G, Schuman JS. Oct for glaucoma diagnosis, screening, and detection of glaucoma progression. Br J Ophthalmol. 2014;98:ii9–15.
- Grewal DS, Tanna AP. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography. Curr Opin Ophthalmol. 2013;24:150–61.
- Asrani S, Rosdahl JA, Allingham RR. Novel strategy for glaucoma diagnosis. Arch Ophthalmol. 2011;129:1205-11.
- Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. a pilot study. Ophthalmology. 1998;105:224-31.
- Lederer DE, Schuman JS, Hertzmark E, Heltzer J, Velazques LJ, Fujimoto JG et al. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am. J. Ophthalmol. 2003;135:838-43.
- Grenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol. 2003;121:41-6.
- Vidas S, Popović-suić S, Novak Lauš K, Jandroković S, Tomić M, Jukić T et al. Analysis of ganglion cell complex and retinal nerve fiber layer thickness in glaucoma diagnosis. Acta Clin Croat. 2017;56:382-90.
- Kim JW, Kim TW, Weinreb RN, Girard MJA, Mari JM. Lamina cribrosa morphology predicts progressive retinal nerve fiber layer loss in eyes with suspected glaucoma. Sci Rep. 2018;15;8:738.
- Jung KI, Jeon S, Park CK. Lamina cribrosa depth is associated with the cup-to-disc ratio in eyes with large optic disc cupping and cup-to-disc ratio asymmetry. J Glaucoma. 2016;25:E536-45.
Glokom erken tanısında lamina kribroza derinliği ve ganglion hücre kompleks kalınlığı ölçümlerinin değerlendirilmesi
Year 2022,
, 259 - 265, 31.03.2022
Şule Barman Kakil
,
Elif Erdem
,
İbrahim İnan Harbiyeli
,
Meltem Yağmur
Abstract
Amaç: Glokom şüphesi ile takip edilen hastaların erken tanı ve progresyonunda ganglion hücre kompleksi ölçümünün ve lamina cribrosa derinliği parametrelerinin kullanımının değerlendirilmesidir.
Gereç ve Yöntem: Glokom şüpheli ve kontrol grubu katılımcılarından Heidelberg Spectralis Spectral Domain Optik Koherens Tomografi ile ölçümler alındı. Her iki grupta ganglion hücre kompleksi kalınlıkları segmentasyon analizi ile lamina kribroza derinlikleri de katılımcıların optik sinir başı görüntüleri kullanılarak ölçüldü.
Bulgular: Çalışmaya 31 glokom şüpheli hasta ve 42 sağlıklı birey dahil edildi. Glokom şüpheli grupta ganglion hücre tabakası kalınlığı 11.46 , kontrol grubunda 12.19 idi. Ortalama lamina kribroza derinliği glokom şüphesi olan grupta 579.3 , kontrol grubunda 399.62 idi.
Sonuç: Optik koherens tomografi, glokom hastalarının tanı ve takibinde oftalmologlara yardımcı olur ve noninvaziv olarak ölçülen ganglion hücre tabakası ve lamina kribroza derinliği erken tanı için yol gösterici olabilir. Bu çalışmada glokom şüphesi olan grupta lamina cribrosa derinlik farkı daha belirgin olduğundan bu parametre erken tanıda kullanılabilir.
References
- NICE. Glaucoma: Diagnosis and Management. London, National Institute for Health and Care Excellence, 2017.
- Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al. Optical coherence tomography. Science. 1991;254:1178–81.
- Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna R et al. Detection of glaucoma progression with stratus oct retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci. 2009;50:5741–48.
- Lucy KA, Wollstein G. Structural, and functional evaluations for the early detection of glaucoma. Expert Rev Ophthalmol. 2016;11:367–76.
- Hodapp E, Parrish RK, Anderson DR. Clinical Decisions in Glaucoma. St. Louis, Mosby, 1993.
- European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition. Br J Ophthalmol. 2017;101:130-95.
- Chang RT, Singh K. Glaucoma suspect: diagnosis and management. Asia Pac J Ophthalmol (Phila). 2016;5:32‐7.
- Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. ii. the site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.
- Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF. Deformation of the lamina cribrosa and anterior scleral canal wall ı̇n early experimental glaucoma. Invest Ophthalmol Vis Sci. 2003;44:623–37.
- Yang H, Downs JC, Bellezza AJ, Thompson H, Burgoyne CF. 3-D Histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest Ophthalmol Vis Sci. 2007;48:5068–84.
- Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol. 1974;13:771–83.
- Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16:426–41.
- Minckler DS, Tso Mo. Light microscopic, autoradiographic study of axoplasmic transport in the normal rhesus optic nerve head. Am J Ophthalmol. 1976;82:1–15.
- Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 2000;19:297–321.
- Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of iop-related stress and strain ı̇n the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005; 24:39–73.
- Kita Y, Kita R, Takeyama A, Takagi S, Nishimura C, Tomita G. Ability of optical coherence tomography-determined ganglion cell complex thickness to total retinal thickness ratio to diagnose glaucoma. J Glaucoma. 2013; 22:757-62.
- Kita Y, Kita R, Nitta A, Nishimura C, Tomita G. Glaucomatous eye macular ganglion cell complex thickness and its relation to temporal circumpapillary retinal nerve fiber layer thickness. Jpn J Ophthalmol. 2011;55:228-34.
- Rao Hl, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117:1692-99.
- Huang JY, Pekmezci M, Mesiwala N, Kao A, Lin S. Diagnostic power of optic disc morphology, peripapillaly retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain coherence tomography. J Glaucoma. 2011;20:87-94.
- Garas A, Vargha P, Hollo G. Diagnostic accuracy of nevre fiber layer, macular thickness and optic disc measurements made with the rtvue-100 optical coherence tomography to detect glaucoma. Eye (Lond). 2011;25:57-65.
- Kim NR, Hong S, Kim JH, Rho SS, Seong GJ, Kim CY. Comparison of macular ganglion cell complex thickness by fourier-domain oct in normal tension glaucoma and primary open-angle glaucoma. J Glaucoma. 2013;22:133-9.
- Park SC, Brumm J, Furlanetto Rl et al. Lamina cribrosa depth in different stages of glaucoma. Invest Ophthalmol Vis Sci. 2015;56:2059–64.
- Lee EJ, Kim TW, Kim M, Kim H. Influence of Lamina cribrosa thickness and depth on the rate of progressive retinal nerve fiber layer thinning. Ophthalmology. 2015;122:721–9.
- Bussel II, Wollstein G, Schuman JS. Oct for glaucoma diagnosis, screening, and detection of glaucoma progression. Br J Ophthalmol. 2014;98:ii9–15.
- Grewal DS, Tanna AP. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography. Curr Opin Ophthalmol. 2013;24:150–61.
- Asrani S, Rosdahl JA, Allingham RR. Novel strategy for glaucoma diagnosis. Arch Ophthalmol. 2011;129:1205-11.
- Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. a pilot study. Ophthalmology. 1998;105:224-31.
- Lederer DE, Schuman JS, Hertzmark E, Heltzer J, Velazques LJ, Fujimoto JG et al. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am. J. Ophthalmol. 2003;135:838-43.
- Grenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol. 2003;121:41-6.
- Vidas S, Popović-suić S, Novak Lauš K, Jandroković S, Tomić M, Jukić T et al. Analysis of ganglion cell complex and retinal nerve fiber layer thickness in glaucoma diagnosis. Acta Clin Croat. 2017;56:382-90.
- Kim JW, Kim TW, Weinreb RN, Girard MJA, Mari JM. Lamina cribrosa morphology predicts progressive retinal nerve fiber layer loss in eyes with suspected glaucoma. Sci Rep. 2018;15;8:738.
- Jung KI, Jeon S, Park CK. Lamina cribrosa depth is associated with the cup-to-disc ratio in eyes with large optic disc cupping and cup-to-disc ratio asymmetry. J Glaucoma. 2016;25:E536-45.