Research Article
BibTex RIS Cite

Korneanın biyomekanik özelliklerinin farklı glokom tiplerinde Corvis Scheimpflug teknolojisi ile değerlendirilmesi

Year 2022, , 426 - 435, 31.03.2022
https://doi.org/10.17826/cumj.1037164

Abstract

Amaç: Bu çalışmanın amacı farklı glokom tiplerinde korneanın biyomekanik özelliklerinin incelenmesi ve kornea biyomekaniği ile demografik ve klinik parametreler arasındaki ilişkinin araştırılmasıdır.
Gereç ve Yöntem: Bu retrospektif gözlemsel çalışmaya primer açık açılı glokom (PAAG), psödoeksfoliatif glokom (PEG) ve pigmenter glokom (PG) olguları ve kontrol grubu olarak sağlıklı olgular dahil edildi. Tüm olgulara kapsamlı oftalmolojik muayene yapıldı, bilgisayarlı perimetri incelemesi ve optik koherens tomografi (OKT) verileri kaydedildi. Korneal biyomekanik özellikler Corvis ST® (Oculus, Wetzlar, Almanya) ile değerlendirildi.
Bulgular: Çalışmaya yaş ortalaması 61,4±11,4 olan 48 glokom olgusu (25 PAAG, 15 PEG, 8 PG; 48 göz) ve 45,2±9,9 olan 51 sağlıklı gönüllü (51 göz) dahil edildi. Birinci aplanasyon hızı (A1V) ve deformasyon amplitüdü (DA) PAAG olgularında diğer gruplara göre daha düşük bulundu. Ayrıca PAAG grubunda 1. aplanasyondaki sertlik parametresi (SP-A1), kontrol grubu ve PEG grubuna kıyasla daha yüksek bulundu. Glokom olgularında, yaş ile stres gerinim indeksi arasında aynı yönlü glokom süresi ile SP-A1 arasında ise ters yönlü bir ilişki bulundu..
Sonuç: Çalışmamızda korneanın PAAG olgularında PEG ve PG olguları ve sağlıklı kornealara kıyasla deformasyona daha dirençli olduğu bulundu. Psödoeksfoliatif glokom ve PG olguları arasında ve bu olgular ile kontrol grubu arasında kornea biyomekaniği açısından bir fark saptanmadı..

References

  • Congdon N, O'Colmain B, Klaver CC, Klein R, Muñoz B, Friedman DS et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122:477-85.
  • Kass MA, Gordon MO. Intraocular pressure and visual field progression in open-angle glaucoma. Am J Ophthalmol. 2000;130:490-1.
  • Jung Y, Park HL, Oh S, Park CK. Corneal biomechanical responses detected using corvis st in primary open angle glaucoma and normal tension glaucoma. Medicine (Baltimore). 2020;99:e19126.
  • Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z; EMGT Group. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114:1965-72.
  • Kotecha A. What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol. 2007;52:109-14.
  • Sigal IA, Yang H, Roberts MD, Grimm JL, Burgoyne CF, Demirel S et al. IOP-induced lamina cribrosa deformation and scleral canal expansion: independent or related? Invest Ophthalmol Vis Sci. 2011;52:9023-32.
  • Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M et al. Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol. 2016;94:317-24.
  • Wang W, Du S, Zhang X. Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Invest Ophthalmol Vis Sci. 2015;56:5557-65.
  • Prata TS, Lima VC, Guedes LM, Biteli LG, Teixeira SH, de Moraes CG et al. Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients. Clin Exp Ophthalmol. 2012;40:682-8.
  • Correia FF, Ramos I, Roberts CJ, Steinmueller A, Krug M, Ambrósio R Jr. Impact of chamber pressure and material properties on the deformation response of corneal models measured by dynamic ultra-high-speed Scheimpflug imaging. Arq Bras Oftalmol. 2013;76:278-81.
  • Hon Y, Lam AK. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci. 2013;90:1-8.
  • Tejwani S, Shetty R, Kurien M, Dinakaran S, Ghosh A, Sinha Roy A. Biomechanics of the cornea evaluated by spectral analysis of waveforms from ocular response analyzer and Corvis-ST. PLoS One. 2014;9:e97591.
  • Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Repeatability, reproducibility, and age dependency of dynamic Scheimpflug-based pneumotonometer and its correlation with a dynamic bidirectional pneumotonometry device. Cornea. 2015;34:71-7.
  • Pradhan ZS, Deshmukh S, Dixit S, Sreenivasaiah S, Shroff S, Devi S et al. A comparison of the corneal biomechanics in pseudoexfoliation glaucoma, primary open-angle glaucoma and healthy controls using Corvis ST. PLoS One. 2020;15:e0241296.
  • Elgin U, Şen E, Şimşek M, Yeşilyaprak N, Yıldırım D. Objective evaluation of corneal clarity in pigment dispersion syndrome and pigmentary glaucoma. Journal of Glaucoma-Cataract. 2021;16:3.
  • Hodapp E, Parrish RK II, Anderson DR. Clinical Decisions in Glaucoma. St. Louis, Mosby Co., 1993.
  • Hong J, Xu J, Wei A, Deng SX, Cui X, Yu X et al. A new tonometer--the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci. 2013;23:659-65.
  • Li Y, Xu Z, Liu Q, Wang Y, Lin K, Xia J et al. Relationship between corneal biomechanical parameters and corneal sublayer thickness measured by Corvis ST and UHR-OCT in keratoconus and normal eyes. Eye Vis (Lond). 2021;8:2.
  • IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.
  • Yazgan S, Celik U, Alagöz N, Taş M. Corneal biomechanical comparison of pseudoexfoliation syndrome, pseudoexfoliative glaucoma and healthy subjects. Curr Eye Res. 2015;40:470-5.
  • Deol M, Taylor DA, Radcliffe NM. Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol. 2015;26:96-102.
  • Salvetat ML, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P. Corneal deformation parameters provided by the Corvis-ST Pachy-Tonometer in healthy subjects and glaucoma patients. J Glaucoma. 2015;24:568-74.
  • Leung CK, Ye C, Weinreb RN. An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement. Invest Ophthalmol Vis Sci. 2013;54:2885-92.
  • Lee R, Chang RT, Wong IY, Lai JS, Lee JW, Singh K. Novel parameter of corneal biomechanics that differentiate normals from glaucoma. J Glaucoma. 2016;25:603-9.
  • Zheng X, Inoue Y, Shiraishi A, Hara Y, Goto T, Ohashi Y. In vivo confocal microscopic and histological findings of unknown bullous keratopathy probably associated with pseudoexfoliation syndrome. BMC Ophthalmol. 2012;12:17.
  • Ozkok A, Tamcelik N, Ozdamar A, Sarici AM, Cicik E. Corneal viscoelastic differences between pseudoexfoliative glaucoma and primary open-angle glaucoma. J Glaucoma. 2013;22:740-5.
  • Ayala M. Corneal hysteresis in normal subjects and in patients with primary open-angle glaucoma and pseudoexfoliation glaucoma. Ophthalmic Res. 2011;46:187-91.
  • Klingenstein A, Kernt M, Seidensticker F, Kampik A, Hirneiss C. Anterior-segment morphology and corneal biomechanical characteristics in pigmentary glaucoma. Clin Ophthalmol. 2014;8:119-26.
  • Scuderi G, Contestabile MT, Scuderi L, Librando A, Fenicia V, Rahimi S. Pigment dispersion syndrome and pigmentary glaucoma: a review and update. Int Ophthalmol. 2019;39:1651-62.
  • Lehto I, Ruusuvaara P, Setälä K. Corneal endothelium in pigmentary glaucoma and pigment dispersion syndrome. Acta Ophthalmol (Copenh). 1990;68:703-9.
  • Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface. 2010;7:1475-85.
  • Song Y, Congdon N, Li L, Zhou Z, Choi K, Lam DS et al. Corneal hysteresis and axial length among Chinese secondary school children: the Xichang Pediatric Refractive Error Study (X-PRES) report no. 4. Am J Ophthalmol. 2008;145:819-26.
  • Weinreb RN, Lindsey JD, Marchenko G, Marchenko N, Angert M, Strongin A. Prostaglandin FP agonists alter metalloproteinase gene expression in sclera. Invest Ophthalmol Vis Sci. 2004;45:4368-77.

Evaluation of the biomechanical properties of the cornea in different glaucoma types with Corvis Scheimpflug technology

Year 2022, , 426 - 435, 31.03.2022
https://doi.org/10.17826/cumj.1037164

Abstract

Purpose: The aim of this study was to evaluate the biomechanical properties of the cornea in different types of glaucoma and the relationship between corneal biomechanics and demographic and clinical parameters.
Materials and Methods: Primary open-angle glaucoma (POAG), pseudoexfoliative glaucoma (PEG) and pigmentary glaucoma (PG) cases and healthy subjects as a control group were included in this retrospective observational study. Detailed ophthalmological examination was performed, computerized perimetry and optical coherence tomography (OCT) data were recorded in all cases. Corneal biomechanical properties were evaluated with Corvis ST® (Oculus, Wetzlar, Germany).
Results: Forty-eight glaucoma cases (25 POAG, 15 PEG, 8 PG; 48 eyes) with a mean age of 61.4±11.4 years and 51 healthy volunteers (51 eyes) with a mean age of 45.2±9.9 years were included in the study. First applanation velocity (A1V) and deformation amplitude (DA) were lower in POAG cases than in other groups. In addition, the stiffness parameter (SP-A1) in the 1st applanation was higher in the POAG group compared to the control and PEG groups.. In glaucoma cases, a positive correlation was found between age and stress strain index, and an inverse relationship between glaucoma duration and SP-A1
Conclusion: The cornea was more resistant to deformation in POAG cases compared to PEG and PG cases and healthy corneas. There was no difference in corneal biomechanics between PEG and PG cases, and between these cases and the control group..

References

  • Congdon N, O'Colmain B, Klaver CC, Klein R, Muñoz B, Friedman DS et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122:477-85.
  • Kass MA, Gordon MO. Intraocular pressure and visual field progression in open-angle glaucoma. Am J Ophthalmol. 2000;130:490-1.
  • Jung Y, Park HL, Oh S, Park CK. Corneal biomechanical responses detected using corvis st in primary open angle glaucoma and normal tension glaucoma. Medicine (Baltimore). 2020;99:e19126.
  • Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z; EMGT Group. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114:1965-72.
  • Kotecha A. What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol. 2007;52:109-14.
  • Sigal IA, Yang H, Roberts MD, Grimm JL, Burgoyne CF, Demirel S et al. IOP-induced lamina cribrosa deformation and scleral canal expansion: independent or related? Invest Ophthalmol Vis Sci. 2011;52:9023-32.
  • Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M et al. Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol. 2016;94:317-24.
  • Wang W, Du S, Zhang X. Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Invest Ophthalmol Vis Sci. 2015;56:5557-65.
  • Prata TS, Lima VC, Guedes LM, Biteli LG, Teixeira SH, de Moraes CG et al. Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients. Clin Exp Ophthalmol. 2012;40:682-8.
  • Correia FF, Ramos I, Roberts CJ, Steinmueller A, Krug M, Ambrósio R Jr. Impact of chamber pressure and material properties on the deformation response of corneal models measured by dynamic ultra-high-speed Scheimpflug imaging. Arq Bras Oftalmol. 2013;76:278-81.
  • Hon Y, Lam AK. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci. 2013;90:1-8.
  • Tejwani S, Shetty R, Kurien M, Dinakaran S, Ghosh A, Sinha Roy A. Biomechanics of the cornea evaluated by spectral analysis of waveforms from ocular response analyzer and Corvis-ST. PLoS One. 2014;9:e97591.
  • Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Repeatability, reproducibility, and age dependency of dynamic Scheimpflug-based pneumotonometer and its correlation with a dynamic bidirectional pneumotonometry device. Cornea. 2015;34:71-7.
  • Pradhan ZS, Deshmukh S, Dixit S, Sreenivasaiah S, Shroff S, Devi S et al. A comparison of the corneal biomechanics in pseudoexfoliation glaucoma, primary open-angle glaucoma and healthy controls using Corvis ST. PLoS One. 2020;15:e0241296.
  • Elgin U, Şen E, Şimşek M, Yeşilyaprak N, Yıldırım D. Objective evaluation of corneal clarity in pigment dispersion syndrome and pigmentary glaucoma. Journal of Glaucoma-Cataract. 2021;16:3.
  • Hodapp E, Parrish RK II, Anderson DR. Clinical Decisions in Glaucoma. St. Louis, Mosby Co., 1993.
  • Hong J, Xu J, Wei A, Deng SX, Cui X, Yu X et al. A new tonometer--the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci. 2013;23:659-65.
  • Li Y, Xu Z, Liu Q, Wang Y, Lin K, Xia J et al. Relationship between corneal biomechanical parameters and corneal sublayer thickness measured by Corvis ST and UHR-OCT in keratoconus and normal eyes. Eye Vis (Lond). 2021;8:2.
  • IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.
  • Yazgan S, Celik U, Alagöz N, Taş M. Corneal biomechanical comparison of pseudoexfoliation syndrome, pseudoexfoliative glaucoma and healthy subjects. Curr Eye Res. 2015;40:470-5.
  • Deol M, Taylor DA, Radcliffe NM. Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol. 2015;26:96-102.
  • Salvetat ML, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P. Corneal deformation parameters provided by the Corvis-ST Pachy-Tonometer in healthy subjects and glaucoma patients. J Glaucoma. 2015;24:568-74.
  • Leung CK, Ye C, Weinreb RN. An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement. Invest Ophthalmol Vis Sci. 2013;54:2885-92.
  • Lee R, Chang RT, Wong IY, Lai JS, Lee JW, Singh K. Novel parameter of corneal biomechanics that differentiate normals from glaucoma. J Glaucoma. 2016;25:603-9.
  • Zheng X, Inoue Y, Shiraishi A, Hara Y, Goto T, Ohashi Y. In vivo confocal microscopic and histological findings of unknown bullous keratopathy probably associated with pseudoexfoliation syndrome. BMC Ophthalmol. 2012;12:17.
  • Ozkok A, Tamcelik N, Ozdamar A, Sarici AM, Cicik E. Corneal viscoelastic differences between pseudoexfoliative glaucoma and primary open-angle glaucoma. J Glaucoma. 2013;22:740-5.
  • Ayala M. Corneal hysteresis in normal subjects and in patients with primary open-angle glaucoma and pseudoexfoliation glaucoma. Ophthalmic Res. 2011;46:187-91.
  • Klingenstein A, Kernt M, Seidensticker F, Kampik A, Hirneiss C. Anterior-segment morphology and corneal biomechanical characteristics in pigmentary glaucoma. Clin Ophthalmol. 2014;8:119-26.
  • Scuderi G, Contestabile MT, Scuderi L, Librando A, Fenicia V, Rahimi S. Pigment dispersion syndrome and pigmentary glaucoma: a review and update. Int Ophthalmol. 2019;39:1651-62.
  • Lehto I, Ruusuvaara P, Setälä K. Corneal endothelium in pigmentary glaucoma and pigment dispersion syndrome. Acta Ophthalmol (Copenh). 1990;68:703-9.
  • Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface. 2010;7:1475-85.
  • Song Y, Congdon N, Li L, Zhou Z, Choi K, Lam DS et al. Corneal hysteresis and axial length among Chinese secondary school children: the Xichang Pediatric Refractive Error Study (X-PRES) report no. 4. Am J Ophthalmol. 2008;145:819-26.
  • Weinreb RN, Lindsey JD, Marchenko G, Marchenko N, Angert M, Strongin A. Prostaglandin FP agonists alter metalloproteinase gene expression in sclera. Invest Ophthalmol Vis Sci. 2004;45:4368-77.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research
Authors

İbrahim İnan Harbiyeli 0000-0003-2586-1096

Elif Erdem 0000-0002-3157-6913

Anıl Uysal 0000-0001-6858-3423

Hülya Binokay This is me 0000-0002-0162-4574

Meltem Yağmur 0000-0002-7581-8056

Publication Date March 31, 2022
Acceptance Date February 13, 2022
Published in Issue Year 2022

Cite

MLA Harbiyeli, İbrahim İnan et al. “Korneanın Biyomekanik özelliklerinin Farklı Glokom Tiplerinde Corvis Scheimpflug Teknolojisi Ile değerlendirilmesi”. Cukurova Medical Journal, vol. 47, no. 1, 2022, pp. 426-35, doi:10.17826/cumj.1037164.