Research Article
BibTex RIS Cite

Otoprotective effects of farnesene against oxidative damage induced by paclitaxel

Year 2022, , 783 - 791, 30.06.2022
https://doi.org/10.17826/cumj.1093970

Abstract

Purpose: This study explores the biochemical and functional effects of farnesene, which has potent free radical scavenging and antioxidant properties, on paclitaxel-induced ototoxicity.
Materials and Methods: Eighteen male Wistar albino rats were allocated into three groups of six rats at random. No paclitaxel or farnesene was given to the control group throughout the research. Paclitaxel was given four times intraperitoneally at a dose of 5 mg/kg (1st, 7th, 14th & 21st days) in the paclitaxel group. In the Farnesene + Paclitaxel group, 5 mg/kg paclitaxel was given first, followed by 4 times 50 mg/kg farnesene intraperitoneally 30 minutes later (1st, 7th, 14th & 21st days). Otoacoustic emission measurement was taken on days 0 and 21 in all rats. After that, the animals were sacrificed, and their cochleas were extracted for biochemical testing.
Results: Paclitaxel caused oxidative stress in the cochlea, which considerably elevated malondialdehyde levels and lowered glutathione levels in cochlear tissues. Furthermore, the paclitaxel group’s distortion product otoacoustic emission values were significantly lower than the other groups. Improvements in the damage produced by paclitaxel in various biochemical and functional parameters were observed in the Farnesene+Paclitaxel group.
Conclusion: The study findings imply that farnesene, a natural antioxidant, reduced paclitaxel-induced hearing loss in rats, and a combination of farnesene and paclitaxel therapy may have protected from paclitaxel-induced ototoxicity for future clinical use.

References

  • Lanvers‐Kaminsky C, Zehnhoff‐Dinnesen AGa, Parfitt R, Ciarimboli G. Drug‐induced ototoxicity: mechanisms, pharmacogenetics, and protective strategies. Clinical pharmacology & therapeutics. 2017; 101:491-500.
  • Paken J, Govender CD, Pillay M, Sewram V. Cisplatin-associated ototoxicity: a review for the health professional. Journal of Toxicology. 2016; 2016:1-13.
  • Knight KRG, Kraemer DF,Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. Journal of Clinical Oncology. 2005; 23:8588-96. Bicaku E, Xiong Y, Marchion DC, Chon HS, Stickles XB, Chen N et al. In vitro analysis of ovarian cancer response to cisplatin, carboplatin, and paclitaxel identifies common pathways that are also associated with overall patient survival. British journal of cancer. 2012; 106:1967-75.
  • Bachegowda LS, Makower DF,Sparano JA. Taxanes: impact on breast cancer therapy. Anti-cancer drugs. 2014; 25:512-21.
  • Sakai H, Yoneda S, Tamura T, Nishiwaki Y, Yokoyama A, Watanabe K, Saijo N. A phase II study of paclitaxel plus cisplatin for advanced non-small-cell lung cancer in Japanese patients. Cancer chemotherapy and pharmacology. 2001; 48:499-503.
  • Misiukiewicz K, Gupta V, Bakst R,Posner M. Taxanes in cancer of the head and neck. Anti-cancer drugs. 2014; 25:561-70.
  • Weaver BA. How Taxol/paclitaxel kills cancer cells. Molecular biology of the cell. 2014; 25:2677-81.
  • Park SB, Lin CSY, Krishnan AV, Friedlander ML, Lewis CR, Kiernan MC. Early, progressive, and sustained dysfunction of sensory axons underlies paclitaxel‐induced neuropathy. Muscle & nerve. 2011; 43:367-74.
  • Pace A, Nisticò C, Cuppone F, Bria E, Galiè E, Graziano G et al. Peripheral neurotoxicity of weekly paclitaxel chemotherapy: a schedule or a dose issue? Clinical breast cancer. 2007; 7:550-54.
  • Dong Y, Ding D, Jiang H, Shi J-r, Salvi R, Roth JA. Ototoxicity of paclitaxel in rat cochlear organotypic cultures. Toxicology and applied pharmacology. 2014; 280:526-33.
  • Sarafraz M, Ahmadi K. Paraclinical evaluation of side-effects of Taxanes on the auditory system. Acta Otorhinolaryngologica Italica. 2008; 28:239-42.
  • Tibaldi C, Pazzagli I, Berrettini S,De Vito A. A case of ototoxicity in a patient with metastatic carcinoma of the breast treated with paclitaxel and vinorelbine. European Journal of Cancer. 1998; 34:1133-34.
  • Bucak A, Ozdemir C, Ulu S, Gonul Y, Aycicek A, Uysal M,Cangal A. Investigation of protective role of curcumin against paclitaxel‐induced inner ear damage in rats. The Laryngoscope. 2015; 125:1175-82.
  • Atalay F, Tatar A, Dincer B, Gündoğdu B, Köyceğiz S. Protective effect of carvacrol against paclitaxel-induced ototoxicity in rat model. Turkish Archives of Otorhinolaryngology. 2020; 58:241-48.
  • Lee CH, Lee SM, Kim SY. Telmisartan Attenuates Kanamycin-Induced Ototoxicity in Rats. International Journal of Molecular Sciences. 2021; 22:1-10.
  • Kilic K, Sakat MS, Akdemir FNE, Yildirim S, Saglam YS,Askin S. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats. Brazilian journal of otorhinolaryngology. 2019; 85:267-74.
  • Sakat MS, Kilic K, Akdemir FNE, Yildirim S, Eser G,Kiziltunc A. The effectiveness of eugenol against cisplatin-induced ototoxicity. Brazilian Journal of Otorhinolaryngology. 2019; 85:766-73.
  • Casares C, Ramírez-Camacho R, Trinidad A, Roldán A, Jorge E,García-Berrocal JR. Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal models. European Archives of Oto-Rhino-Laryngology. 2012; 269:2455-59.
  • Rybak LP. Mechanisms of cisplatin ototoxicity and progress in otoprotection. Current opinion in otolaryngology & head and neck surgery. 2007; 15:364-69.
  • Bernardes ACFPF, Matosinhos RC, Araújo MCdPM, Barros CH, Soares RDdOA, Costa DC et al. Sesquiterpene lactones from Lychnophora species: Antinociceptive, anti-inflammatory, and antioxidant pathways to treat acute gout. Journal of Ethnopharmacology. 2021; 269:113738.
  • Liu X, Bian L, Duan X, Zhuang X, Sui Y,Yang L. Alantolactone: A sesquiterpene lactone with diverse pharmacological effects. Chemical Biology & Drug Design. 2021; 98:1131-45.
  • Gach K, Długosz A,Janecka A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn-Schmiedeberg's archives of pharmacology. 2015; 388:477-86.
  • Arslan ME, Türkez H,Mardinoğlu A. In vitro neuroprotective effects of farnesene sesquiterpene on alzheimer’s disease model of differentiated neuroblastoma cell line. International Journal of Neuroscience. 2021; 131:745-54.
  • Sarikurkcu C, Sabih Ozer M, Cakir A, Eskici M,Mete E. GC/MS Evaluation and In Vitro Antioxidant Activity of Essential Oil and Solvent Extracts of an Endemic Plant Used as Folk Remedy in Turkey: Phlomis bourgaei Boiss. Evidence-Based Complementary and Alternative Medicine. 2013; 2013:1-7.
  • Chehregani A, Mohsenzadeh F, Mirazi N, Hajisadeghian S,Baghali Z. Chemical composition and antibacterial activity of essential oils of Tripleurospermum disciforme in three developmental stages. Pharmaceutical Biology. 2010; 48:1280-84.
  • Afoulous S, Ferhout H, Raoelison EG, Valentin A, Moukarzel B, Couderc F,Bouajila J. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food and chemical toxicology. 2013; 56:352-62.
  • Khan R, Sultana S. Farnesol attenuates 1, 2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chemico-Biological Interactions. 2011; 192:193-200.
  • Apaydın E, Dağlı E, Bayrak S, Kankılıç ES, Şahin H,Acar A. Protective effect of creatine on amikacin-induced ototoxicity. Brazilian Journal of Otorhinolaryngology. 2020; 1-7.
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry. 1968; 25:192-205.
  • Ohkawa H, Ohishi N,Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry. 1979; 95:351-58.
  • Lee CH, Lee D-h, Lee SM,Kim SY. Otoprotective effects of zingerone on cisplatin-induced ototoxicity. International journal of molecular sciences. 2020; 21:1-11.
  • Fernandez K, Spielbauer KK, Rusheen A, Wang L, Baker TG, Eyles S,Cunningham LL. Lovastatin protects against cisplatin-induced hearing loss in mice. Hearing research. 2020; 389:1-22.
  • Yan-Hua Y, Jia-Wang MAO,Xiao-Li TAN. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chinese Journal of Natural Medicines. 2020; 18:890-97.
  • Yayla M, Harun Ü, Binnetoğlu D. Neuroprotective effects of phloretin and phloridzin on paclitaxel-induced neuronal damage in primary neuron cells. Cukurova Medical Journal. 2021; 46:632-39.
  • Cavaletti G, Cavalletti E, Oggioni N, Sottani C, Minoia C, D'Incalci M et al. Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology. 2000; 21:389-93.
  • Deavall DG, Martin EA, Horner JM, Roberts R. Drug-induced oxidative stress and toxicity. Journal of toxicology. 2012; 2012:1-13.
  • Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Frontiers in cellular neuroscience. 2017; 11:1-12.
  • Ravi R, Somani SM,Rybak LP. Mechanism of cisplatin ototoxicity: antioxidant system. Pharmacology & toxicology. 1995; 76:386-94.
  • Kökten N, Eğilmez OK, Erinç M, Ekici AID, Şerifler S, Yeşilada E,Kalcıoğlu MT. The Protective Effect of Nigella sativa Oil against Experimentally Induced Cisplatin Ototoxicity: An Animal Study. The journal of international advanced otology. 2020; 16:346-52.
  • Eryilmaz A, Eliyatkin N, Demirci B, Basal Y, Kurt Omurlu I, Gunel C et al. Protective effect of Pycnogenol on cisplatin-induced ototoxicity in rats. Pharmaceutical biology. 2016; 54:2777-81.
  • Yazici ZM, Meric A, Midi A, Arınc YV, Kahya V, Hafız G. Reduction of cisplatin ototoxicity in rats by oral administration of pomegranate extract. European Archives of Oto-Rhino-Laryngology. 2012; 269:45-52.
  • Şimşek G, Tokgoz SA, Vuralkan E, Caliskan M, Besalti O, Akin I. Protective effects of resveratrol on cisplatin-dependent inner-ear damage in rats. European Archives of Oto-Rhino-Laryngology. 2013; 270:1789-93.
  • Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. International journal of molecular sciences. 2013; 14:12780-805.
  • Al-Maskri AY, Hanif MA, Al-Maskari MY, Abraham AS, Al-sabahi JN, Al-Mantheri O. Essential oil from Ocimum basilicum (Omani Basil): a desert crop. Natural product communications. 2011; 6:1487-90.
  • Turkez H, Sozio P, Geyikoglu F, Tatar A, Hacimuftuoglu A, Di Stefano A. Neuroprotective effects of farnesene against hydrogen peroxide-induced neurotoxicity in vitro. Cellular and molecular neurobiology. 2014; 34:101-11.
  • Abdala C, Visser-Dumont L. Distortion product otoacoustic emissions: A tool for hearing assessment and scientific study. The Volta Review. 2001; 103:281-302.

Paklitakselin neden olduğu oksidatif hasara karşı farnesenin otoprotektif etkileri

Year 2022, , 783 - 791, 30.06.2022
https://doi.org/10.17826/cumj.1093970

Abstract

Amaç: Bu çalışmanın amacı, güçlü serbest radikal süpürücü ve antioksidan özelliklere sahip farnesenin paklitaksel kaynaklı ototoksisite üzerindeki etkilerini biyokimyasal ve fonksiyonel yönden araştırmaktır.
Gereç ve Yöntem: On sekiz erkek Wistar albino sıçan, altı sıçandan oluşan üç gruba rastgele ayrıldı. Araştırma boyunca kontrol grubuna paklitaksel veya farnesen verilmedi. Paklitaksel grubuna, 5mg/kg paklitaksel intraperitoneal olarak dört kez (1., 7., 14. ve 21. günlerde) verildi. Farnesen + paklitaksel grubuna, önce 5 mg/kg paklitaksel, 30 dakika sonra 50 mg/kg farnesen intraperitoneal olarak 4 kez (1., 7., 14. ve 21. günlerde) verildi. 0. ve 21. günlerde tüm sıçanların otoakustik emisyon ölçümü yapıldı. Daha sonra hayvanlar sakrifiye edildi ve biyokimyasal testler için kokleaları çıkarıldı.
Bulgular: Paklitaksel, önemli ölçüde malondialdehit seviyelerini yükselterek ve glutatyon seviyelerini düşürerek kokleada oksidatif strese neden oldu. Ayrıca paklitaksel grubunun distorsiyon ürünü otoakustik emisyon değerleri diğer gruplara göre anlamlı derecede düşüktü. Farnesen+paklitaksel grubunda ise paklitakselin çeşitli biyokimyasal ve fonksiyonel parametrelerde oluşturduğu hasarda iyileşmeler gözlendi.
Sonuç: Çalışma sonuçları doğal bir antioksidan olan farnesen’in sıçanlarda paklitaksel kaynaklı işitme kaybını azalttığını, farnesen ve paklitaksel kombinasyonunun gelecekte klinik kullanım için paklitaksel kaynaklı ototoksisiteden koruyabileceğini göstermektedir.

References

  • Lanvers‐Kaminsky C, Zehnhoff‐Dinnesen AGa, Parfitt R, Ciarimboli G. Drug‐induced ototoxicity: mechanisms, pharmacogenetics, and protective strategies. Clinical pharmacology & therapeutics. 2017; 101:491-500.
  • Paken J, Govender CD, Pillay M, Sewram V. Cisplatin-associated ototoxicity: a review for the health professional. Journal of Toxicology. 2016; 2016:1-13.
  • Knight KRG, Kraemer DF,Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. Journal of Clinical Oncology. 2005; 23:8588-96. Bicaku E, Xiong Y, Marchion DC, Chon HS, Stickles XB, Chen N et al. In vitro analysis of ovarian cancer response to cisplatin, carboplatin, and paclitaxel identifies common pathways that are also associated with overall patient survival. British journal of cancer. 2012; 106:1967-75.
  • Bachegowda LS, Makower DF,Sparano JA. Taxanes: impact on breast cancer therapy. Anti-cancer drugs. 2014; 25:512-21.
  • Sakai H, Yoneda S, Tamura T, Nishiwaki Y, Yokoyama A, Watanabe K, Saijo N. A phase II study of paclitaxel plus cisplatin for advanced non-small-cell lung cancer in Japanese patients. Cancer chemotherapy and pharmacology. 2001; 48:499-503.
  • Misiukiewicz K, Gupta V, Bakst R,Posner M. Taxanes in cancer of the head and neck. Anti-cancer drugs. 2014; 25:561-70.
  • Weaver BA. How Taxol/paclitaxel kills cancer cells. Molecular biology of the cell. 2014; 25:2677-81.
  • Park SB, Lin CSY, Krishnan AV, Friedlander ML, Lewis CR, Kiernan MC. Early, progressive, and sustained dysfunction of sensory axons underlies paclitaxel‐induced neuropathy. Muscle & nerve. 2011; 43:367-74.
  • Pace A, Nisticò C, Cuppone F, Bria E, Galiè E, Graziano G et al. Peripheral neurotoxicity of weekly paclitaxel chemotherapy: a schedule or a dose issue? Clinical breast cancer. 2007; 7:550-54.
  • Dong Y, Ding D, Jiang H, Shi J-r, Salvi R, Roth JA. Ototoxicity of paclitaxel in rat cochlear organotypic cultures. Toxicology and applied pharmacology. 2014; 280:526-33.
  • Sarafraz M, Ahmadi K. Paraclinical evaluation of side-effects of Taxanes on the auditory system. Acta Otorhinolaryngologica Italica. 2008; 28:239-42.
  • Tibaldi C, Pazzagli I, Berrettini S,De Vito A. A case of ototoxicity in a patient with metastatic carcinoma of the breast treated with paclitaxel and vinorelbine. European Journal of Cancer. 1998; 34:1133-34.
  • Bucak A, Ozdemir C, Ulu S, Gonul Y, Aycicek A, Uysal M,Cangal A. Investigation of protective role of curcumin against paclitaxel‐induced inner ear damage in rats. The Laryngoscope. 2015; 125:1175-82.
  • Atalay F, Tatar A, Dincer B, Gündoğdu B, Köyceğiz S. Protective effect of carvacrol against paclitaxel-induced ototoxicity in rat model. Turkish Archives of Otorhinolaryngology. 2020; 58:241-48.
  • Lee CH, Lee SM, Kim SY. Telmisartan Attenuates Kanamycin-Induced Ototoxicity in Rats. International Journal of Molecular Sciences. 2021; 22:1-10.
  • Kilic K, Sakat MS, Akdemir FNE, Yildirim S, Saglam YS,Askin S. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats. Brazilian journal of otorhinolaryngology. 2019; 85:267-74.
  • Sakat MS, Kilic K, Akdemir FNE, Yildirim S, Eser G,Kiziltunc A. The effectiveness of eugenol against cisplatin-induced ototoxicity. Brazilian Journal of Otorhinolaryngology. 2019; 85:766-73.
  • Casares C, Ramírez-Camacho R, Trinidad A, Roldán A, Jorge E,García-Berrocal JR. Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal models. European Archives of Oto-Rhino-Laryngology. 2012; 269:2455-59.
  • Rybak LP. Mechanisms of cisplatin ototoxicity and progress in otoprotection. Current opinion in otolaryngology & head and neck surgery. 2007; 15:364-69.
  • Bernardes ACFPF, Matosinhos RC, Araújo MCdPM, Barros CH, Soares RDdOA, Costa DC et al. Sesquiterpene lactones from Lychnophora species: Antinociceptive, anti-inflammatory, and antioxidant pathways to treat acute gout. Journal of Ethnopharmacology. 2021; 269:113738.
  • Liu X, Bian L, Duan X, Zhuang X, Sui Y,Yang L. Alantolactone: A sesquiterpene lactone with diverse pharmacological effects. Chemical Biology & Drug Design. 2021; 98:1131-45.
  • Gach K, Długosz A,Janecka A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn-Schmiedeberg's archives of pharmacology. 2015; 388:477-86.
  • Arslan ME, Türkez H,Mardinoğlu A. In vitro neuroprotective effects of farnesene sesquiterpene on alzheimer’s disease model of differentiated neuroblastoma cell line. International Journal of Neuroscience. 2021; 131:745-54.
  • Sarikurkcu C, Sabih Ozer M, Cakir A, Eskici M,Mete E. GC/MS Evaluation and In Vitro Antioxidant Activity of Essential Oil and Solvent Extracts of an Endemic Plant Used as Folk Remedy in Turkey: Phlomis bourgaei Boiss. Evidence-Based Complementary and Alternative Medicine. 2013; 2013:1-7.
  • Chehregani A, Mohsenzadeh F, Mirazi N, Hajisadeghian S,Baghali Z. Chemical composition and antibacterial activity of essential oils of Tripleurospermum disciforme in three developmental stages. Pharmaceutical Biology. 2010; 48:1280-84.
  • Afoulous S, Ferhout H, Raoelison EG, Valentin A, Moukarzel B, Couderc F,Bouajila J. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food and chemical toxicology. 2013; 56:352-62.
  • Khan R, Sultana S. Farnesol attenuates 1, 2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chemico-Biological Interactions. 2011; 192:193-200.
  • Apaydın E, Dağlı E, Bayrak S, Kankılıç ES, Şahin H,Acar A. Protective effect of creatine on amikacin-induced ototoxicity. Brazilian Journal of Otorhinolaryngology. 2020; 1-7.
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry. 1968; 25:192-205.
  • Ohkawa H, Ohishi N,Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry. 1979; 95:351-58.
  • Lee CH, Lee D-h, Lee SM,Kim SY. Otoprotective effects of zingerone on cisplatin-induced ototoxicity. International journal of molecular sciences. 2020; 21:1-11.
  • Fernandez K, Spielbauer KK, Rusheen A, Wang L, Baker TG, Eyles S,Cunningham LL. Lovastatin protects against cisplatin-induced hearing loss in mice. Hearing research. 2020; 389:1-22.
  • Yan-Hua Y, Jia-Wang MAO,Xiao-Li TAN. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chinese Journal of Natural Medicines. 2020; 18:890-97.
  • Yayla M, Harun Ü, Binnetoğlu D. Neuroprotective effects of phloretin and phloridzin on paclitaxel-induced neuronal damage in primary neuron cells. Cukurova Medical Journal. 2021; 46:632-39.
  • Cavaletti G, Cavalletti E, Oggioni N, Sottani C, Minoia C, D'Incalci M et al. Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology. 2000; 21:389-93.
  • Deavall DG, Martin EA, Horner JM, Roberts R. Drug-induced oxidative stress and toxicity. Journal of toxicology. 2012; 2012:1-13.
  • Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Frontiers in cellular neuroscience. 2017; 11:1-12.
  • Ravi R, Somani SM,Rybak LP. Mechanism of cisplatin ototoxicity: antioxidant system. Pharmacology & toxicology. 1995; 76:386-94.
  • Kökten N, Eğilmez OK, Erinç M, Ekici AID, Şerifler S, Yeşilada E,Kalcıoğlu MT. The Protective Effect of Nigella sativa Oil against Experimentally Induced Cisplatin Ototoxicity: An Animal Study. The journal of international advanced otology. 2020; 16:346-52.
  • Eryilmaz A, Eliyatkin N, Demirci B, Basal Y, Kurt Omurlu I, Gunel C et al. Protective effect of Pycnogenol on cisplatin-induced ototoxicity in rats. Pharmaceutical biology. 2016; 54:2777-81.
  • Yazici ZM, Meric A, Midi A, Arınc YV, Kahya V, Hafız G. Reduction of cisplatin ototoxicity in rats by oral administration of pomegranate extract. European Archives of Oto-Rhino-Laryngology. 2012; 269:45-52.
  • Şimşek G, Tokgoz SA, Vuralkan E, Caliskan M, Besalti O, Akin I. Protective effects of resveratrol on cisplatin-dependent inner-ear damage in rats. European Archives of Oto-Rhino-Laryngology. 2013; 270:1789-93.
  • Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. International journal of molecular sciences. 2013; 14:12780-805.
  • Al-Maskri AY, Hanif MA, Al-Maskari MY, Abraham AS, Al-sabahi JN, Al-Mantheri O. Essential oil from Ocimum basilicum (Omani Basil): a desert crop. Natural product communications. 2011; 6:1487-90.
  • Turkez H, Sozio P, Geyikoglu F, Tatar A, Hacimuftuoglu A, Di Stefano A. Neuroprotective effects of farnesene against hydrogen peroxide-induced neurotoxicity in vitro. Cellular and molecular neurobiology. 2014; 34:101-11.
  • Abdala C, Visser-Dumont L. Distortion product otoacoustic emissions: A tool for hearing assessment and scientific study. The Volta Review. 2001; 103:281-302.
There are 46 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research
Authors

Büşra Dincer 0000-0002-3365-7741

Fatma Atalay 0000-0002-0344-1982

Arzu Tatar 0000-0002-4486-2695

Publication Date June 30, 2022
Acceptance Date May 20, 2022
Published in Issue Year 2022

Cite

MLA Dincer, Büşra et al. “Otoprotective Effects of Farnesene Against Oxidative Damage Induced by Paclitaxel”. Cukurova Medical Journal, vol. 47, no. 2, 2022, pp. 783-91, doi:10.17826/cumj.1093970.