Research Article
BibTex RIS Cite

Ursolik asidin RANKL ile indüklenen osteoklast farklılaşması üzerindeki in vitro etkileri

Year 2024, , 712 - 720, 30.09.2024
https://doi.org/10.17826/cumj.1466896

Abstract

Amaç: Ursolik asit, izoprenoid birimlerden oluşan küçük bir pentasiklik triterpen molekülüdür. Ursolik asidin romatoid artrit tedavisinde etkili olduğu birçok çalışmada gösterilmiş olmasına rağmen, kemik kaybının neden olduğu kemik hastalıkları üzerine çok sınırlı araştırma yapılmıştır. Bu çalışma, kemikleri güçlendirmek ve yaşlılıkta canlılığı artırmak için osteoklast fonksiyonunu inhibe eden bitkisel ilaçlar bulmak amacıyla ursolik asidin osteoklast oluşumu üzerindeki etkilerini değerlendirmeyi amaçlamıştır.
Gereç ve Yöntem: Çalışmamızda RAW264.7 fare makrofajları kullanılmış ve hücreler osteoklastik farklılaşma için 100 ng/mL RANKL ile muamele edilmiştir. Daha sonra, ursolik asit tedavisinin hücre canlılığı, tartarat dirençli asit fosfataz (TRAP) oluşumu ve osteoklastik gen ekspresyon seviyeleri üzerindeki etkileri ölçülmüştür.
Bulgular: Sonuçlarımız ursolik asidin 2.5-10 µg/mL konsantrasyonlarında önemli bir sitotoksisite sergilemediğini göstermiştir (%3,2-9,8). Ayrıca, ursolik asit osteoklastların farklılaşmasını inhibe etmiş (%15,2-39,1) ve katepsin K (%3,8-22,3), TRAP (%16,3-48,7), matriks metalloproteinaz-9 (MMP-9) (%10,7-40,2), aktive T hücre sitoplazmik nükleer faktörü-1 (NFATc1) (%1,2-29,7), c-Fos (%0,9-13,8) ve mikroftalmi ile ilişkili transkripsiyon faktörü (MITF) (%2,2-21,6) gibi osteoklastik genlerin ekspresyonunu baskılamıştır.
Sonuç: Ursolik asidin RANKL ile indüklenen osteoklast farklılaşmasını inhibe ettiği gösterilmiştir ve bu nedenle ursolik asidin osteoporozun tedavisi ve önlenmesi için kullanılabileceği kanaatini taşımaktayız.

Project Number

TLO-2023-10609

References

  • Yedavally-Yellayi S, Ho AM, Patalinghug EM. Update on osteoporosis. Prim Care. 2019;46:175-90.
  • Gardner MJ, Collinge C. Management principles of osteoporotic fractures. Injury. 2016;47:33-5.
  • Buck HV, Stains JP. Osteocyte-mediated mechanical response controls osteoblast differentiation and function. Front Physiol. 2024;15:1364694.
  • Takegahara N, Kim H, Choi Y. Unraveling the intricacies of osteoclast differentiation and maturation: insight into novel therapeutic strategies for bone-destructive diseases. Exp Mol Med. 2024;56:264-72.
  • Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: an insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol. 2023;238:1431-64.
  • Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006;12:17-25.
  • Feng X. RANKing intracellular signaling in osteoclasts. IUBMB Life. 2005;57:389-95.
  • Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 2004;15:457-75.
  • Kodama J, Kaito T. Osteoclast multinucleation: Review of current literature. Int J Mol Sci. 2020;21:5685.
  • Soysa NS, Alles N. NF-kappaB functions in osteoclasts. Biochem Biophys Res Commun. 2009;378:1-5.
  • Sharma A, Sharma L, Goyal R. Molecular signaling pathways and essential metabolic elements in bone remodeling: an implication of therapeutic targets for bone diseases. Curr Drug Targets. 2021;22:77-104.
  • Sohn KH, Lee HY, Chung HY, Young HS, Yi SY, Kim KW. Anti-angiogenic activity of triterpene acids. Cancer Lett. 1995;94:213-8.
  • Liu G, Qin P, Cheng X, Wu L, Wang R, Gao W. Ursolic acid: biological functions and application in animal husbandry. Front Vet Sci. 2023;10:1251248.
  • Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003;63:4375-83.
  • Lee SU, Park SJ, Kwak HB, Oh J, Min YK, Kim SH. Anabolic activity of ursolic acid in bone: stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo. Pharmacol Res. 2008;58:290-6.
  • Hu L, Lind T, Sundqvist A, Jacobson A, Melhus H. Retinoic acid increases proliferation of human osteoclast progenitors and inhibits RANKL-stimulated osteoclast differentiation by suppressing RANK. PLoS One. 2010;5:e13305.
  • Sapkota M, Li L, Choi H, Gerwick WH, Soh Y. Bromo-honaucin A inhibits osteoclastogenic differentiation in RAW 264.7 cells via Akt and ERK signaling pathways. Eur J Pharmacol. 2015;769:100-9.
  • Borciani G, Montalbano G, Baldini N, Vitale-Brovarone C, Ciapetti G. Protocol of co-culture of human osteoblasts and osteoclasts to test biomaterials for bone tissue engineering. Methods Protoc. 2022;5:8.
  • Sapkota M, Li L, Kim SW, Soh Y. Thymol inhibits RANKL-induced osteoclastogenesis in RAW264.7 and BMM cells and LPS-induced bone loss in mice. Food Chem Toxicol. 2018;120:418-29.
  • Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag. 2018;14:2029-49.
  • Ukon Y, Makino T, Kodama J, Tsukazaki H, Tateiwa D, Yoshikawa H et al. Molecular-based treatment strategies for osteoporosis: a literature review. Int J Mol Sci. 2019;20:2557.
  • Yang Y, Jiang Y, Qian D, Wang Z, Xiao L. Prevention and treatment of osteoporosis with natural products: regulatory mechanism based on cell ferroptosis. J Orthop Surg Res. 2023;18:951.
  • Kim EY, Sudini K, Singh AK, Haque M, Leaman D, Khuder S et al. Ursolic acid facilitates apoptosis in rheumatoid arthritis synovial fibroblasts by inducing SP1-mediated Noxa expression and proteasomal degradation of Mcl-1. FASEB J. 2018;32:fj201800425R.
  • Lee SU, Park SJ, Kwak HB, Oh J, Min YK, Kim SH. Anabolic activity of ursolic acid in bone: stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo. Pharmacol Res. 2008;58:290-6.
  • Cheng M, Liang XH, Wang QW, Deng YT, Zhao ZX, Liu XY. Ursolic acid prevents retinoic acid-induced bone loss in rats. Chin J Integr Med. 2019;25:210-5.
  • Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res. 2002;17:101-10.
  • Singh A, Mehdi AA, Srivastava RN, Verma NS. Immunoregulation of bone remodelling. Int J Crit Illn Inj Sci. 2012;2:75-81.
  • Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells. 2017;40:706-13.
  • Yu M, Moreno JL, Stains JP, Keegan AD. Complex regulation of tartrate-resistant acid phosphatase (TRAP) expression by interleukin 4 (IL-4): IL-4 indirectly suppresses receptor activator of NF-kappaB ligand (RANKL)-mediated TRAP expression but modestly induces its expression directly. J Biol Chem. 2009;284:32968-79.
  • Zhu M, Liu H, Sun K, Liu J, Mou Y, Qi D et al. Vinpocetine inhibits RANKL-induced osteoclastogenesis and attenuates ovariectomy-induced bone loss. Biomed Pharmacother. 2020;123:109769.
  • Kim EJ, Lee H, Kim MH, Yang WM. Inhibition of RANKL-stimulated osteoclast differentiation by Schisandra chinensis through down-regulation of NFATc1 and c-fos expression. BMC Complement Altern Med. 2018;18:270.
  • Park GD, Cheon YH, Eun SY, Lee CH, Lee MS, Kim JY et al. β-boswellic acid inhibits RANKL-induced osteoclast differentiation and function by attenuating NF-κB and Btk-PLCγ2 signaling pathways. Molecules. 2021;26:2665.
  • Jeong DH, Kwak SC, Lee MS, Yoon KH, Kim JY, Lee CH. Betulinic acid inhibits RANKL-induced osteoclastogenesis via attenuating Akt, NF-κB, and PLCγ2-Ca2+ signaling and prevents inflammatory bone loss. J Nat Prod. 2020;83:1174-82.
  • Wei J, Li Y, Liu Q, Lan Y, Wei C, Tian K et al. Betulinic acid protects from bone loss in ovariectomized mice and suppresses RANKL-associated osteoclastogenesis by inhibiting the MAPK and NFATc1 pathways. Front Pharmacol. 2020;11:1025.
  • Huang H, Ryu J, Ha J, Chang EJ, Kim HJ, Kim HM et al. Osteoclast differentiation requires TAK1 and MKK6 for NFATc1 induction and NF-kappaB transactivation by RANKL. Cell Death Differ. 2006;13:1879-91.
  • Suda T, Takahashi N. Contributions to osteoclast biology from Japan. Proc Jpn Acad Ser B Phys Biol Sci. 2008;84:419-38

In vitro effects of ursolic acid on RANKL-induced osteoclast differentiation

Year 2024, , 712 - 720, 30.09.2024
https://doi.org/10.17826/cumj.1466896

Abstract

Purpose: Ursolic acid is a small pentacyclic triterpene molecule composed of isoprenoid units. Although ursolic acid has been shown to be effective in the treatment of rheumatoid arthritis in many studies, very little research has been conducted on bone diseases caused by bone loss. The present study aimed to evaluate the effects of ursolic acid on osteoclast formation with the aim of finding herbal medicines that inhibit osteoclast function to strengthen bones and promote vitality in old age.
Materials and Methods: RAW264.7 murine macrophages were used in our study and cells were treated with 100 ng/mL RANKL for osteoclastic differentiation. The effects of ursolic acid treatment on cell viability, tartrate-resistant acid phosphatase (TRAP) formation and osteoclastic gene expression levels were then measured.
Results: Our results showed that ursolic acid did not exhibit significant cytotoxicity (3.2-9.8%) at concentrations of 2.5-10 µg/mL. Furthermore, ursolic acid inhibited osteoclast differentiation (15.2-39.1%) and suppressed the expression of osteoclastic genes such as cathepsin K (3.8-22.3%), TRAP (16.3-48. 7%), matrix metalloproteinase-9 (MMP-9) (10.7-40.2%), nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) (1.2-29.7%), c-Fos (0.9-13.8%) and microphthalmia-associated transcription factor (MITF) (2.2-21.6%).
Conclusion: Ursolic acid has been shown to inhibit RANKL-induced osteoclast differentiation and therefore we believe that ursolic acid may be used for the treatment and prevention of osteoporosis.

Ethical Statement

As this research is a cell culture study, ethics committee approval is not required. No conflict of interest was declared by the authors.

Supporting Institution

This research was financially supported in part by the Office of Scientific Research Projects of Van Yuzuncu Yil University under Grant number (TLO-2023-10609).

Project Number

TLO-2023-10609

References

  • Yedavally-Yellayi S, Ho AM, Patalinghug EM. Update on osteoporosis. Prim Care. 2019;46:175-90.
  • Gardner MJ, Collinge C. Management principles of osteoporotic fractures. Injury. 2016;47:33-5.
  • Buck HV, Stains JP. Osteocyte-mediated mechanical response controls osteoblast differentiation and function. Front Physiol. 2024;15:1364694.
  • Takegahara N, Kim H, Choi Y. Unraveling the intricacies of osteoclast differentiation and maturation: insight into novel therapeutic strategies for bone-destructive diseases. Exp Mol Med. 2024;56:264-72.
  • Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: an insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol. 2023;238:1431-64.
  • Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006;12:17-25.
  • Feng X. RANKing intracellular signaling in osteoclasts. IUBMB Life. 2005;57:389-95.
  • Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 2004;15:457-75.
  • Kodama J, Kaito T. Osteoclast multinucleation: Review of current literature. Int J Mol Sci. 2020;21:5685.
  • Soysa NS, Alles N. NF-kappaB functions in osteoclasts. Biochem Biophys Res Commun. 2009;378:1-5.
  • Sharma A, Sharma L, Goyal R. Molecular signaling pathways and essential metabolic elements in bone remodeling: an implication of therapeutic targets for bone diseases. Curr Drug Targets. 2021;22:77-104.
  • Sohn KH, Lee HY, Chung HY, Young HS, Yi SY, Kim KW. Anti-angiogenic activity of triterpene acids. Cancer Lett. 1995;94:213-8.
  • Liu G, Qin P, Cheng X, Wu L, Wang R, Gao W. Ursolic acid: biological functions and application in animal husbandry. Front Vet Sci. 2023;10:1251248.
  • Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003;63:4375-83.
  • Lee SU, Park SJ, Kwak HB, Oh J, Min YK, Kim SH. Anabolic activity of ursolic acid in bone: stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo. Pharmacol Res. 2008;58:290-6.
  • Hu L, Lind T, Sundqvist A, Jacobson A, Melhus H. Retinoic acid increases proliferation of human osteoclast progenitors and inhibits RANKL-stimulated osteoclast differentiation by suppressing RANK. PLoS One. 2010;5:e13305.
  • Sapkota M, Li L, Choi H, Gerwick WH, Soh Y. Bromo-honaucin A inhibits osteoclastogenic differentiation in RAW 264.7 cells via Akt and ERK signaling pathways. Eur J Pharmacol. 2015;769:100-9.
  • Borciani G, Montalbano G, Baldini N, Vitale-Brovarone C, Ciapetti G. Protocol of co-culture of human osteoblasts and osteoclasts to test biomaterials for bone tissue engineering. Methods Protoc. 2022;5:8.
  • Sapkota M, Li L, Kim SW, Soh Y. Thymol inhibits RANKL-induced osteoclastogenesis in RAW264.7 and BMM cells and LPS-induced bone loss in mice. Food Chem Toxicol. 2018;120:418-29.
  • Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag. 2018;14:2029-49.
  • Ukon Y, Makino T, Kodama J, Tsukazaki H, Tateiwa D, Yoshikawa H et al. Molecular-based treatment strategies for osteoporosis: a literature review. Int J Mol Sci. 2019;20:2557.
  • Yang Y, Jiang Y, Qian D, Wang Z, Xiao L. Prevention and treatment of osteoporosis with natural products: regulatory mechanism based on cell ferroptosis. J Orthop Surg Res. 2023;18:951.
  • Kim EY, Sudini K, Singh AK, Haque M, Leaman D, Khuder S et al. Ursolic acid facilitates apoptosis in rheumatoid arthritis synovial fibroblasts by inducing SP1-mediated Noxa expression and proteasomal degradation of Mcl-1. FASEB J. 2018;32:fj201800425R.
  • Lee SU, Park SJ, Kwak HB, Oh J, Min YK, Kim SH. Anabolic activity of ursolic acid in bone: stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo. Pharmacol Res. 2008;58:290-6.
  • Cheng M, Liang XH, Wang QW, Deng YT, Zhao ZX, Liu XY. Ursolic acid prevents retinoic acid-induced bone loss in rats. Chin J Integr Med. 2019;25:210-5.
  • Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res. 2002;17:101-10.
  • Singh A, Mehdi AA, Srivastava RN, Verma NS. Immunoregulation of bone remodelling. Int J Crit Illn Inj Sci. 2012;2:75-81.
  • Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells. 2017;40:706-13.
  • Yu M, Moreno JL, Stains JP, Keegan AD. Complex regulation of tartrate-resistant acid phosphatase (TRAP) expression by interleukin 4 (IL-4): IL-4 indirectly suppresses receptor activator of NF-kappaB ligand (RANKL)-mediated TRAP expression but modestly induces its expression directly. J Biol Chem. 2009;284:32968-79.
  • Zhu M, Liu H, Sun K, Liu J, Mou Y, Qi D et al. Vinpocetine inhibits RANKL-induced osteoclastogenesis and attenuates ovariectomy-induced bone loss. Biomed Pharmacother. 2020;123:109769.
  • Kim EJ, Lee H, Kim MH, Yang WM. Inhibition of RANKL-stimulated osteoclast differentiation by Schisandra chinensis through down-regulation of NFATc1 and c-fos expression. BMC Complement Altern Med. 2018;18:270.
  • Park GD, Cheon YH, Eun SY, Lee CH, Lee MS, Kim JY et al. β-boswellic acid inhibits RANKL-induced osteoclast differentiation and function by attenuating NF-κB and Btk-PLCγ2 signaling pathways. Molecules. 2021;26:2665.
  • Jeong DH, Kwak SC, Lee MS, Yoon KH, Kim JY, Lee CH. Betulinic acid inhibits RANKL-induced osteoclastogenesis via attenuating Akt, NF-κB, and PLCγ2-Ca2+ signaling and prevents inflammatory bone loss. J Nat Prod. 2020;83:1174-82.
  • Wei J, Li Y, Liu Q, Lan Y, Wei C, Tian K et al. Betulinic acid protects from bone loss in ovariectomized mice and suppresses RANKL-associated osteoclastogenesis by inhibiting the MAPK and NFATc1 pathways. Front Pharmacol. 2020;11:1025.
  • Huang H, Ryu J, Ha J, Chang EJ, Kim HJ, Kim HM et al. Osteoclast differentiation requires TAK1 and MKK6 for NFATc1 induction and NF-kappaB transactivation by RANKL. Cell Death Differ. 2006;13:1879-91.
  • Suda T, Takahashi N. Contributions to osteoclast biology from Japan. Proc Jpn Acad Ser B Phys Biol Sci. 2008;84:419-38
There are 36 citations in total.

Details

Primary Language English
Subjects Orthopaedics, Metabolic Medicine
Journal Section Research
Authors

Mehmet Berköz 0000-0003-4219-8054

Maryenur Çetiner 0009-0000-0666-309X

Project Number TLO-2023-10609
Publication Date September 30, 2024
Submission Date April 8, 2024
Acceptance Date September 9, 2024
Published in Issue Year 2024

Cite

MLA Berköz, Mehmet and Maryenur Çetiner. “In Vitro Effects of Ursolic Acid on RANKL-Induced Osteoclast Differentiation”. Cukurova Medical Journal, vol. 49, no. 3, 2024, pp. 712-20, doi:10.17826/cumj.1466896.