Research Article
BibTex RIS Cite

Glifosatın üreaz enzimi üzerindeki interferansına ilişkin in vitro deneysel bir çalışma

Year 2024, , 779 - 792, 30.09.2024
https://doi.org/10.17826/cumj.1514902

Abstract

Amaç: Türkiye'de tarım alanlarının yoğunluğu nedeniyle glifosata maruziyet artmaktadır. Bu çalışmada glifosatın birçok hastalığın tanı ve takibinde üre ölçümünde sıklıkla kullanılan bir enzim olan üreaz üzerindeki olası interferans etkisi incelendi.
Gereç ve Yöntem: Ön denemelerde glifosatın, değişen konsantrasyonlarda üre solüsyonlarıyla negatif etkileşime sahip olduğu gözlendi. İn vitro ortamda glifosat eklenmesi öncesi ve sonrası sonuçlara etkisini belirlemek amacıyla kan örnekleri üreaz-GLDH ve dolaylı nesslerizasyon prosedürleri kullanılarak incelendi. Morfolojik ve kimyasal değişiklikler için taramalı elektron mikroskobu (SEM) ve Fouirer-Transform Infrared Spektrofotometre (FTIR) analizleri yapıldı ve moleküler kenetleme yoluyla bağlanma modelleri oluşturuldu. Üreaz-GLDH ve dolaylı nesslerizasyon ile gerçekleştirilen üre ölçümleri, 10–3, 10–4, ve 10–5 M konsantrasyonlarında glifosattaki sonuçlar üzerinde negatif bir etkileşim göstermiştir.
Bulgular: SEM analizinde gözlenen morfolojik değişiklikler, FTIR analizinde oluşan 3228.25 (O-H), 1642.08 (C=C), ve 1531.20 (N-O) cm–1 bağları ile desteklenmiştir. Ayrıca moleküler kenetleme analizi, glifosatın, üreazı hidrojen bağı (Gly13, Ser12, Lys14, Thr15, ve Asp37) ve hidrofobik etkileşimler (Val10, Asp37, ve Glu98) yoluyla etkilediğini göstermektedir. Bu etkileşimli amino asitlerin, üreazın aktif katalitik konformasyonunun erişilebilirliğini sınırladığını ve/veya katalitik geçiş durumunun stabilitesini etkilediği öngörülmüştür.
Sonuç: Glifosat, insan serum üre testlerinde negatif etkileşime yol açarak klinik biyokimya, mikrobiyoloji ve tarım laboratuvarlarında hatalı test sonuçlarına yol açar. Analiz yapılırken bu etki dikkate alınmalı ve klinisyenlerin yanı sıra hastane bilgi yönetim sistemleri de bu müdahaleye özel önem verilerek önceden bilgilendirilmelidir.

References

  • Matsumoto S, Häberle J, Kido J, Mitsubuchi H, Endo F, Nakamura K. Urea cycle disorders—update. J Hum Genet. 2019;64:833–47.
  • Mew A, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML. Urea cycle disorders overview. In Gene Reviews (Eds MP Adam, J Feldman, GM Mirzaa). Seattle (WA), University of Washington, 2017.
  • Nassogne M-C, Heron B, Touati G, Rabier D, Saudubray J. Urea cycle defects: Management and outcome. J Inherit Metab Dis. 2005;28:407–14.
  • Mobley HLT. Urease. In Helicobacter pylori: Physiology and Genetics. (Eds HLT Mobley, GL Mendz, SL Hazell):177-91. Washington (DC), ASM Press, 2001.
  • Graham DY, Miftahussurur M. Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review. J Adv Res. 2018;13:51–7.
  • Marshall BJ. One hundred years of discovery and rediscovery of Helicobacter pylori and its association with peptic ulcer disease. In Helicobacter pylori: Physiology and Genetics. (Eds HLT Mobley, GL Mendz, SL Hazell):19-24. Washington (DC), ASM Press, 2001.
  • Perrais M, Rousseaux C, Ducourouble M-P, Courcol R, Vincent P, Jonckheere N et al. Helicobacter pylori urease and flagellin alter mucin gene expression in human gastric cancer cells. Gastric Cancer. 2014;17:235–46.
  • Valiyaveettil AN, Hamide A, Bobby Z, Krishnan R. Effect of anti-Helicobacter pylori therapy on outcome of iron-deficiency anemia: A randomized, controlled study. Indian J Gastroenterol. 2005;24:155–57.
  • Dogan Z, Sarikaya M, Ergul B, Filik L. The effect of Helicobacter pylori eradication on insulin resistance and hba1c level in people with normal glucose levels: A prospective study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159:242–5.
  • Lin W, Mathys V, Ang ELY, Koh VHQ, Martínez Gómez JM, Ang MLT et al. Urease activity represents an alternative pathway for mycobacterium tuberculosis nitrogen metabolism. Infect Immun. 2012;80:2771–9.
  • Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F et al. Origins of the e. Coli strain causing an outbreak of hemolytic–uremic syndrome in germany. N Engl J Med. 2011;365:709–17.
  • Malchow HA. Crohn's disease and escherichia coli: A new approach in therapy to maintain remission of colonic crohn’s disease? J Clin Gastroenterol. 1997;25:653–8.
  • Armbruster CE, Mobley HL, Pearson MM. Pathogenesis of proteus mirabilis infection. EcoSal Plus. 2018;8:10.1128/ecosalplus.ESP-0009-2017.
  • Hovelius B, Mårdh PA. Staphylococcus saprophyticus as a common cause of urinary tract infections. Rev Infect Dis. 1984;6:328–37.
  • Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant staphylococcus aureus infection. Clin Infect Dis. 2008;46:350–9.
  • Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiol Rev. 2019;43:123–44.
  • Nim YS, Wong KB. The maturation pathway of nickel urease. Inorganics. 2019;7:85.
  • Parra MC, Collins CM. Mutational analysis of the n-terminal domain of urer, the positive transcriptional regulator of urease gene expression. Microbiol Res. 2012;167:433-44.
  • Sammons RD, Gaines TA. Glyphosate resistance: State of knowledge. Pest Manag Sci. 2014;70:1367–77.
  • Ozbay B, Akyol NH, Akyol G, Ozbay I. Sorption and desorption behaviours of 2,4‐d and glyphosate in calcareous soil from Antalya, Turkey. Water Environ J. 2018;32:141–8.
  • Klingelhöfer D, Braun M, Brüggmann D, Groneberg DA. Glyphosate: How do ongoing controversies, market characteristics, and funding influence the global research landscape? Sci Total Environ. 2021;765:144271.
  • Rubin JL, Gaines CG, Jensen RA. Enzymological basis for herbicidal action of glyphosate. Plant Physiol. 1982;70:833–39.
  • Cakmak I, Yazici A, Tutus Y, Ozturk L. Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. Eur J Agron. 2009;31:114–19.
  • Özkan E, Aydın B. Türkiyenin farklı bölgelerindeki çeşitli tarımsal ürün maliyetlerinin ve etkileyen unsurların karşılaştırmalı değerlendirmesi. Tarım Bilimleri Araştırma Dergisi. 2012;5:134–38.
  • Battaglin WA, Meyer M, Kuivila K, Dietze J. Glyphosate and its degradation product ampa occur frequently and widely in us soils, surface water, groundwater, and precipitation. JAWRA J Am Water Resour Assoc. 2014;50:275–90.
  • Van Bruggen AH, He MM, Shin K, Mai V, Jeong K, Finckh M et al. Environmental and health effects of the herbicide glyphosate. Sci Total Environ. 2018;616:255–68.
  • Agostini LP, Dettogni RS, Dos Reis RS, Stur E, Dos Santos EV, Ventorim DP et al. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci Total Environ. 2020;705:135808.
  • Sampson EJ, Baird MA. Chemical inhibition used in a kinetic urease/glutamate dehydrogenase method for urea in serum. Clin Chem. 1979;25:1721–9.
  • Adeloju S, Shaw S, Wallace G. Polypyrrole-based potentiometric biosensor for urea part 1. Incorporation of urease. Anal Chim Acta. 1993;281:611–20.
  • Sanner MF. Python: A programming language for software integration and development. J Mol Graph Model. 1999;17:57–61.
  • Poccia N, Ricci A, Innocenti D, Bianconi A. A possible mechanism for evading temperature quantum decoherence in living matter by feshbach resonance. Int J Mol Sci. 2009;10:2084–106.
  • Mousavi-Nasab SH, Sotoudeh-Anvari A. A comprehensive mcdm-based approach using topsis, copras and dea as an auxiliary tool for material selection problems. Mater Des. 2017;121:237–53.
  • Husunet MT, Mısırlı RÇ, Istıflı ES, Ila HB. Investigation of the genotoxic effects of patent blue v (e131) in human peripheral lymphocytes and in silico molecular docking. Drug Chem Toxicol. 2022;45:1780-6.
  • Vaghela C, Kulkarni M, Haram S, Aiyer R, Karve M. A novel inhibition based biosensor using urease nanoconjugate entrapped biocomposite membrane for potentiometric glyphosate detection. Int J Biol Macromol. 2018;108:32–40.
  • Çiçek K, Ayaz D, Afsar M, Bayrakcı Y, Pekşen ÇA, Cumhuriyet O et al. Unsustainable harvest of water frogs in southern Turkey for the European market. Oryx. 2021;55:364–72.
  • Cakirli Akyüz N, Theuvsen L. Organic agriculture in Turkey: Status, achievements, and shortcomings. Organic Agriculture. 2021:11:501-7.
  • Singh M, Sandhir R, Kiran R. Erythrocyte antioxidant enzymes in toxicological evaluation of commonly used organophosphate pesticides. Indian J Exp Biol. 2006;44:580–3.
  • Singh M, Sandhir R, Kiran R. In vitro effects of organophosphate pesticides on rat erythrocytes. Indian J Exp Biol. 2004; 42:292-6.
  • Altuntas I, Delibas N, Sutcu R. The effects of organophosphate insecticide methidathion on lipid peroxidation and anti-oxidant enzymes in rat erythrocytes: Role of vitamins e and c. Hum Exp Toxicol. 2002;21:681–5.
  • Suwalsky M, Ramos P, Villena F, Cárdenas H, Norris B, Cuevas F et al. The organophosphorus insecticide parathion changes properties of natural and model membranes. Pest Biochem Physiol. 2001;70:74–85.
  • Kartlaşmş K, Dikmen N. Evaluation of the effect of glyphosate on glucose-6-phosphate dehydrogenase enzyme activity in vitro conditions. Cukurova Medical Journal. 2022;47:143–51.
  • Dimeski G. Interference testing. Clin Biochem Rev. 2008;29:43.
  • Merrill AE, Mainali S, Krasowski MD. Data on the frequency and causes of icteric interference in clinical chemistry laboratory tests. Data Brief. 2022;40:107771.
  • Bowen R, Benavides R, Colón-Franco JM, Katzman BM, Muthukumar A, Sadrzadeh H et al. Best practices in mitigating the risk of biotin interference with laboratory testing. Clin Biochem. 2019;74:1–11.
  • Bachmeier KL, Williams AE, Warmington JR, Bang SS. Urease activity in microbiologically-induced calcite precipitation. J Biotech. 2002;93:171–81.
  • Fu Q, Abadie M, Blaud A, Carswell A, Misselbrook TH, Clark IM et al. Effects of urease and nitrification inhibitors on soil n, nitrifier abundance and activity in a sandy loam soil. Biol Fertil Soils. 2020;56:185–94.
  • Zaborska W, Krajewska B, Kot M, Karcz W. Quinone-induced inhibition of urease: Elucidation of its mechanisms by probing thiol groups of the enzyme. Bioorg Chem. 2007;35:233–42.
  • Kosikowska P, Berlicki Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin Ther Pat. 2011;21:945–57.
  • Abdullah MA, Abuo-Rahma GE-DA, Abdelhafez E-SM, Hassan HA, Abd El-Baky RM. Design, synthesis, molecular docking, anti-proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives. Bioorg Chem. 2017;70:1–11.
  • Abdullah M, El-Baky R, Hassan HA, Abdelhafez E, Abuo-Rahma GE-DA. Fluoroquinolones as urease inhibitors: Anti-proteus mirabilis activity and molecular docking studies. Am J Microbiol Res. 2016;4:81–4.
  • Ntatsopoulos V, Vassiliou S, Macegoniuk K, Berlicki Ł, Mucha A. Novel organophosphorus scaffolds of urease inhibitors obtained by substitution of morita-baylis-hillman adducts with phosphorus nucleophiles. Eur J Med Chem. 2017;133:107–20.

An in vitro experimental study on the interference of glyphosate on the urease enzyme

Year 2024, , 779 - 792, 30.09.2024
https://doi.org/10.17826/cumj.1514902

Abstract

Purpose: Exposure to glyphosate is increasing due to the density of agricultural areas in Türkiye. In this study, the possible interference effect of glyphosate on urease, an enzyme that is frequently used in the diagnosis and follow-up of many diseases and in the measurement of urea in biological samples was examined.
Materials and Methods: First, glyphosate was observed to have a negative interference in experiments using solutions of varying concentrations of urea. Second, blood samples were examined using the urease-glutamate dehydrogenase (GLDH) and indirect nesslerization procedures to determine the effects of glyphosate on the results before and after its addition. To determine the morphological and chemical alterations, scanning electron microscope (SEM) and Fourier-transform infrared spectroscopy (FTIR) analyses were conducted, and binding patterns were established through molecular docking. Urea measurements conducted with urease-GLDH and indirect nesslerization demonstrated a negative interference on the results with glyphosate concentrations of 10–3, 10–4, and 10–5 M.
Results: Morphological changes observed in the SEM analysis were supported by the 3228.25 (O-H), 1642.08 (C=C), and 1531.20 (N-O) cm–1 bonds formed in the FTIR analysis. Furthermore, the molecular docking analysis showed that glyphosate affected the urease via hydrogen bonding (Gly13, Ser12, Lys14, Thr15, and Asp37) and hydrophobic interactions (Val10, Asp37, and Glu98). It was hypothesized that these interacting amino acids limit the accessibility of the urease’s active catalytic conformation and/or impact the stability of the catalytic transition state.
Conclusion: Glyphosate leads to negative interference in human serum urea assays, leading to incorrect test results in clinical biochemistry, microbiology, and agricultural laboratories. This effect should be considered when conducting analysis, and clinicians as well as hospital information management systems should be informed ahead of time, with special emphasis devoted to this interference.

References

  • Matsumoto S, Häberle J, Kido J, Mitsubuchi H, Endo F, Nakamura K. Urea cycle disorders—update. J Hum Genet. 2019;64:833–47.
  • Mew A, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML. Urea cycle disorders overview. In Gene Reviews (Eds MP Adam, J Feldman, GM Mirzaa). Seattle (WA), University of Washington, 2017.
  • Nassogne M-C, Heron B, Touati G, Rabier D, Saudubray J. Urea cycle defects: Management and outcome. J Inherit Metab Dis. 2005;28:407–14.
  • Mobley HLT. Urease. In Helicobacter pylori: Physiology and Genetics. (Eds HLT Mobley, GL Mendz, SL Hazell):177-91. Washington (DC), ASM Press, 2001.
  • Graham DY, Miftahussurur M. Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review. J Adv Res. 2018;13:51–7.
  • Marshall BJ. One hundred years of discovery and rediscovery of Helicobacter pylori and its association with peptic ulcer disease. In Helicobacter pylori: Physiology and Genetics. (Eds HLT Mobley, GL Mendz, SL Hazell):19-24. Washington (DC), ASM Press, 2001.
  • Perrais M, Rousseaux C, Ducourouble M-P, Courcol R, Vincent P, Jonckheere N et al. Helicobacter pylori urease and flagellin alter mucin gene expression in human gastric cancer cells. Gastric Cancer. 2014;17:235–46.
  • Valiyaveettil AN, Hamide A, Bobby Z, Krishnan R. Effect of anti-Helicobacter pylori therapy on outcome of iron-deficiency anemia: A randomized, controlled study. Indian J Gastroenterol. 2005;24:155–57.
  • Dogan Z, Sarikaya M, Ergul B, Filik L. The effect of Helicobacter pylori eradication on insulin resistance and hba1c level in people with normal glucose levels: A prospective study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159:242–5.
  • Lin W, Mathys V, Ang ELY, Koh VHQ, Martínez Gómez JM, Ang MLT et al. Urease activity represents an alternative pathway for mycobacterium tuberculosis nitrogen metabolism. Infect Immun. 2012;80:2771–9.
  • Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F et al. Origins of the e. Coli strain causing an outbreak of hemolytic–uremic syndrome in germany. N Engl J Med. 2011;365:709–17.
  • Malchow HA. Crohn's disease and escherichia coli: A new approach in therapy to maintain remission of colonic crohn’s disease? J Clin Gastroenterol. 1997;25:653–8.
  • Armbruster CE, Mobley HL, Pearson MM. Pathogenesis of proteus mirabilis infection. EcoSal Plus. 2018;8:10.1128/ecosalplus.ESP-0009-2017.
  • Hovelius B, Mårdh PA. Staphylococcus saprophyticus as a common cause of urinary tract infections. Rev Infect Dis. 1984;6:328–37.
  • Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant staphylococcus aureus infection. Clin Infect Dis. 2008;46:350–9.
  • Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiol Rev. 2019;43:123–44.
  • Nim YS, Wong KB. The maturation pathway of nickel urease. Inorganics. 2019;7:85.
  • Parra MC, Collins CM. Mutational analysis of the n-terminal domain of urer, the positive transcriptional regulator of urease gene expression. Microbiol Res. 2012;167:433-44.
  • Sammons RD, Gaines TA. Glyphosate resistance: State of knowledge. Pest Manag Sci. 2014;70:1367–77.
  • Ozbay B, Akyol NH, Akyol G, Ozbay I. Sorption and desorption behaviours of 2,4‐d and glyphosate in calcareous soil from Antalya, Turkey. Water Environ J. 2018;32:141–8.
  • Klingelhöfer D, Braun M, Brüggmann D, Groneberg DA. Glyphosate: How do ongoing controversies, market characteristics, and funding influence the global research landscape? Sci Total Environ. 2021;765:144271.
  • Rubin JL, Gaines CG, Jensen RA. Enzymological basis for herbicidal action of glyphosate. Plant Physiol. 1982;70:833–39.
  • Cakmak I, Yazici A, Tutus Y, Ozturk L. Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. Eur J Agron. 2009;31:114–19.
  • Özkan E, Aydın B. Türkiyenin farklı bölgelerindeki çeşitli tarımsal ürün maliyetlerinin ve etkileyen unsurların karşılaştırmalı değerlendirmesi. Tarım Bilimleri Araştırma Dergisi. 2012;5:134–38.
  • Battaglin WA, Meyer M, Kuivila K, Dietze J. Glyphosate and its degradation product ampa occur frequently and widely in us soils, surface water, groundwater, and precipitation. JAWRA J Am Water Resour Assoc. 2014;50:275–90.
  • Van Bruggen AH, He MM, Shin K, Mai V, Jeong K, Finckh M et al. Environmental and health effects of the herbicide glyphosate. Sci Total Environ. 2018;616:255–68.
  • Agostini LP, Dettogni RS, Dos Reis RS, Stur E, Dos Santos EV, Ventorim DP et al. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci Total Environ. 2020;705:135808.
  • Sampson EJ, Baird MA. Chemical inhibition used in a kinetic urease/glutamate dehydrogenase method for urea in serum. Clin Chem. 1979;25:1721–9.
  • Adeloju S, Shaw S, Wallace G. Polypyrrole-based potentiometric biosensor for urea part 1. Incorporation of urease. Anal Chim Acta. 1993;281:611–20.
  • Sanner MF. Python: A programming language for software integration and development. J Mol Graph Model. 1999;17:57–61.
  • Poccia N, Ricci A, Innocenti D, Bianconi A. A possible mechanism for evading temperature quantum decoherence in living matter by feshbach resonance. Int J Mol Sci. 2009;10:2084–106.
  • Mousavi-Nasab SH, Sotoudeh-Anvari A. A comprehensive mcdm-based approach using topsis, copras and dea as an auxiliary tool for material selection problems. Mater Des. 2017;121:237–53.
  • Husunet MT, Mısırlı RÇ, Istıflı ES, Ila HB. Investigation of the genotoxic effects of patent blue v (e131) in human peripheral lymphocytes and in silico molecular docking. Drug Chem Toxicol. 2022;45:1780-6.
  • Vaghela C, Kulkarni M, Haram S, Aiyer R, Karve M. A novel inhibition based biosensor using urease nanoconjugate entrapped biocomposite membrane for potentiometric glyphosate detection. Int J Biol Macromol. 2018;108:32–40.
  • Çiçek K, Ayaz D, Afsar M, Bayrakcı Y, Pekşen ÇA, Cumhuriyet O et al. Unsustainable harvest of water frogs in southern Turkey for the European market. Oryx. 2021;55:364–72.
  • Cakirli Akyüz N, Theuvsen L. Organic agriculture in Turkey: Status, achievements, and shortcomings. Organic Agriculture. 2021:11:501-7.
  • Singh M, Sandhir R, Kiran R. Erythrocyte antioxidant enzymes in toxicological evaluation of commonly used organophosphate pesticides. Indian J Exp Biol. 2006;44:580–3.
  • Singh M, Sandhir R, Kiran R. In vitro effects of organophosphate pesticides on rat erythrocytes. Indian J Exp Biol. 2004; 42:292-6.
  • Altuntas I, Delibas N, Sutcu R. The effects of organophosphate insecticide methidathion on lipid peroxidation and anti-oxidant enzymes in rat erythrocytes: Role of vitamins e and c. Hum Exp Toxicol. 2002;21:681–5.
  • Suwalsky M, Ramos P, Villena F, Cárdenas H, Norris B, Cuevas F et al. The organophosphorus insecticide parathion changes properties of natural and model membranes. Pest Biochem Physiol. 2001;70:74–85.
  • Kartlaşmş K, Dikmen N. Evaluation of the effect of glyphosate on glucose-6-phosphate dehydrogenase enzyme activity in vitro conditions. Cukurova Medical Journal. 2022;47:143–51.
  • Dimeski G. Interference testing. Clin Biochem Rev. 2008;29:43.
  • Merrill AE, Mainali S, Krasowski MD. Data on the frequency and causes of icteric interference in clinical chemistry laboratory tests. Data Brief. 2022;40:107771.
  • Bowen R, Benavides R, Colón-Franco JM, Katzman BM, Muthukumar A, Sadrzadeh H et al. Best practices in mitigating the risk of biotin interference with laboratory testing. Clin Biochem. 2019;74:1–11.
  • Bachmeier KL, Williams AE, Warmington JR, Bang SS. Urease activity in microbiologically-induced calcite precipitation. J Biotech. 2002;93:171–81.
  • Fu Q, Abadie M, Blaud A, Carswell A, Misselbrook TH, Clark IM et al. Effects of urease and nitrification inhibitors on soil n, nitrifier abundance and activity in a sandy loam soil. Biol Fertil Soils. 2020;56:185–94.
  • Zaborska W, Krajewska B, Kot M, Karcz W. Quinone-induced inhibition of urease: Elucidation of its mechanisms by probing thiol groups of the enzyme. Bioorg Chem. 2007;35:233–42.
  • Kosikowska P, Berlicki Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin Ther Pat. 2011;21:945–57.
  • Abdullah MA, Abuo-Rahma GE-DA, Abdelhafez E-SM, Hassan HA, Abd El-Baky RM. Design, synthesis, molecular docking, anti-proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives. Bioorg Chem. 2017;70:1–11.
  • Abdullah M, El-Baky R, Hassan HA, Abdelhafez E, Abuo-Rahma GE-DA. Fluoroquinolones as urease inhibitors: Anti-proteus mirabilis activity and molecular docking studies. Am J Microbiol Res. 2016;4:81–4.
  • Ntatsopoulos V, Vassiliou S, Macegoniuk K, Berlicki Ł, Mucha A. Novel organophosphorus scaffolds of urease inhibitors obtained by substitution of morita-baylis-hillman adducts with phosphorus nucleophiles. Eur J Med Chem. 2017;133:107–20.
There are 51 citations in total.

Details

Primary Language English
Subjects Medical Biochemistry - Amino Acids and Metabolites
Journal Section Research
Authors

Kezban Kartlaşmış 0000-0001-5090-0013

Mehmet Tahir Hüsunet 0000-0003-1424-5132

Sevinç Püren Yücel Karakaya 0000-0002-5768-3549

Tuğba Polat 0000-0003-2840-9070

Zeynep Tan 0000-0003-1404-7283

Nurten Dikmen 0000-0002-7411-9640

Publication Date September 30, 2024
Submission Date July 12, 2024
Acceptance Date September 8, 2024
Published in Issue Year 2024

Cite

MLA Kartlaşmış, Kezban et al. “An in Vitro Experimental Study on the Interference of Glyphosate on the Urease Enzyme”. Cukurova Medical Journal, vol. 49, no. 3, 2024, pp. 779-92, doi:10.17826/cumj.1514902.