Research Article
BibTex RIS Cite

Üreazın modifiye edilmiş florisile kovalent immobilizasyonu ve serbest ve immobilize üreazın karakterizasyonu

Year 2019, , 811 - 818, 30.09.2019
https://doi.org/10.17826/cumj.453980

Abstract

Amaç:Bu çalışmada Canavalia
ensiformis
kaynaklı üreazın modifiye edilmiş Florisil’e (magnezyum
silikat)
  kovalent immobilize edilmesi ve
immobilize üreazın karakterizasyonunun yapılarak biyoreaktör uygulamalarında
kullanılabilirliğinin araştırılması amaçlanmıştır.

Gereç ve Yöntem:Florisil, 3-aminopropiltrietoksisilan ile aktifleştirilmiş daha sonra
glutaraldehit ile modifiye edilmiştir. Modifiye edilmiş desteğe
üreaz kovalent immobilize edilmiştir. İmmobilize
enzimin ve desteğin taramalı elektron mikroskobunda görüntüleri incelenmiştir. Serbest
ve immobilize üreazın optimum pH’sı, sıcaklığı, kinetik parametreleri (Km, Vmax, kcat/Km) belirlenmiş, 4°C’de ve
oda sıcaklığında depolama kararlılıkları incelenmiştir. İmmobilize üreazın
kesikli tip reaktörde tekrar kullanılabilirliği araştırılmıştır.

Bulgular:Serbest ve immobilize
üreaz için optimum pH sırasıyla 7,0 ve 6,5; sıcaklık ise 50 ve 60°C olarak
belirlenmiştir. İmmobilizasyondan sonra enzimin Km değeri 2,2 kat artmıştır.
İmmobilize üreazın katalitik etkinliği, serbest üreazın katalitik etkinliğinin %.0,1’i
kadar bulunmuştur. Oda sıcaklığında ve 4°C’de serbest üreaz 5 gün sonunda ve aktivitesini
tamamen kaybederken immobilize üreaz 19 gün sonunda aktivitesini
kaybetmemiştir. İmmobilize üreaz kesikli tip biyoreaktörde 10 kullanım sonunda
başlangıç aktivitesinin %50’sini korumuştur. 

Sonuç:Modifiye Florisile kovalent immobilize edilen üreazın serbest üreaza
göre düşük katalitik aktivite göstermesine rağmen, immobilize üreazın serbest üreaza
göre depolama kararlılığının yüksek olması ve biyoreaktör uygulamalarında
tekrar kullanılabilmesi nedeniyle immobilize üreazın kullanım potansiyeli
yüksektir.

References

  • Krajewska B, Ciurli S. Jack bean (Canavalia ensiformis) urease. Probing acid-base groups of the active site by pH variation. Plant Physiol Biochem 2005;43(7):651-8.
  • Blakely RL, Zerner B. 1984. Jack Bean Urease: The First Nickel Enzyme. J Mol Catal. 1984;23:263–292.
  • Takishima K, Suga T, Mamiya G. The structure of jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues. Eur J Biochem. 1988;175(1):151-65.
  • Cao L, Schmid RD. Carrier-bound Immobilized Enzymes: Principles, Application and Design. Wiley-VCH Verlag GmbH & Co. KGaA. 2006.
  • Wang L, Wang S, Deng X, Zhang Y, Xiong C. Development of coconut shell activated carbon-tethered urease for degradation of urea in a packed bed. ACS Sustainable Chem Eng., 2014;2 (3):433–439.
  • Zhou J, Cao J, Huan W, Huang L, Wang Y, Zhang S, Yuan Y, Huaa D. Preparation and property of urease immobilization with cationic poly(4-vinylpyridine) functionalized colloidal particles. Chem Biochem Eng Q., 2013;27 (4): 431–437.
  • Uygun M, Akduman B, Akgöl S, Denizli A. A new metal-chelated cryogel for reversible immobilization of urease. Appl Biochem Biotechnol. 2013;170(8):1815-26.
  • Ispirli Doğaç Y, Deveci I, Teke M, Mercimek B. TiO₂ beads and TiO₂-chitosan beads for urease immobilization. Mater Sci Eng C Mater Biol Appl. 2014;42:429-35.
  • D'Souza SF, Kumar J, Jha SK, Kubal BS. Immobilization of the urease on eggshell membrane and its application in biosensor. Mater Sci Eng C Mater Biol Appl. 2013;33(2):850-4.
  • Yücebilgiç G, Güşeşçi N, Yıldırım D. Immobilization and characterization of urease onto different spacer arms attached magnetic nanoparticles. New Biotechn. 2016;33:S1–S213.
  • Garg S, De A, Mozumdar S. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles. J Biomed Mater Res A. 2015;103(5):1771-83.
  • Lv M, Ma X, Anderson DP, Chang PR. Immobilization of urease onto cellulose spheres for the selective removal of urea. Cellulose 2018;25:233–243.
  • Tükel SS, Alptekin Ö. Immobilization and kinetics of catalase onto magnesium silicate. Process Biochem. 2004;39(12): 2149-2125.
  • Smith P K, Krohn R.I, Hermanson GT, Mallia AK, Gartner F H, Provenzano M D, Fujimoto EK, Goeke N M, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1): 76-85.
  • Rao MS, Chellapandian M, Krishnan MRV. Immobilization of urease on gelatin — poly (HEMA) copolymer preparation and characterization. Bioprocess Engineering. 1995;13(4):211-214.
  • Wiseman Alan. Handbook of Enzyme Biotechnology. 2nd Edit., John Wiley & Sons, Chichester, England, 1985.
  • Chen JP, Chiu SH. Preparation and characterization of urease immobilized onto porous chitosan beads for urea hydrolysis. Bioprocess Eng. 1999;21:323–330.
  • Alatawi FS, Monier M, Elsayed NH. Amino functionalization of carboxymethyl cellulose for efficient immobilization of urease. Int J Biol Macromol. 2018;114:1018-1025.
  • Moon BM, Choi MJ, Sultan MT, Yang JW, Ju HW, Lee JM, Park HJ, Park YR, Kim SH, Kim DW, Lee MC, Jeong JY, Lee OJ, Sung GY, Park CH. Novel fabrication method of the peritoneal dialysis filter using silk fibroin with urease fixation system. J Biomed Mater Res B Appl Biomater. 2017;105(7):2136-2144.
  • Yeon KH, Lueptow RM. Urease immobilization on an ion-exchange textile for urea hydrolysis. J Chem Technol Biotechnol. 2006; 81:940–950.
  • Doğaç YI, Teke M. Synthesis and characterisation of biocompatible polymer-conjugated magnetic beads for enhancement stability of urease. Appl Biochem Biotechnol. 2016;179(1):94-110.
  • Pozniak, G, Krajewska B, Trochimczuk W. Urease immobilized on modified polysulphone membrane: preparation and properties. Biomater. 1995; 16:129-134.
  • Somtürk B, Yılmaz I, Altınkaynak C, Karatepe A, Özdemir N, Ocsoy I. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol. 2016;86:134-42.
  • Maia MDMD, de Vasconcelos EA, de Mascena Diniz PFC, da Costa Maciel J,Cajueiro KRR, da Silva MDPC, et al. Immobilization of urease on vapour phase stain etched porous silicon. Process Biochem. 2007; 42: 429–433.
  • Rogalski J, Szczodrak J, Pleszczyńsk M, Fiedurek J. Immobilisation and kinetics of Penicillium notatum dextranase on controlled porous glass. J Mole Cataly B Enzym. 1997; 3(6):271-283.
  • Kumar, Sandeep; Kansal, Ajay; Kayastha, Arvind M; Immobilization of jack bean (Canavalia ensiformis) urease on gelatin and its characterization. Oriental Pharmacy and Experimental Medicine. 2005;5(1):43-47.
  • Bayramoğlu G, Altınok H, Bulut A, Denizli A, Arıca MY. Preparation and application of spacer-arm-attached poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) films for urease immobilisation. Reac Func Polym. 2003; 56(2):111-121.

Covalent immobilization of urease onto modified florisil and characterization of free and immobilized urease

Year 2019, , 811 - 818, 30.09.2019
https://doi.org/10.17826/cumj.453980

Abstract

Purpose: In this study, it was aimed to immobilize urease from Canavalia ensiformis onto modified Florisil (magnesium silicate) by covalently and to characterize immobilized urease and also to investigate reusability of immobilized urease in a batch type bioreactor.

Materials and Methods: Florisil was activated with 3-aminopropyltriethoxysilane and then modified with glutaraldehyde. Urease was covalently immobilized onto modified support. Images of support and immobilized urease were examined on a scanning electron microscope. The optimum pH and temperature, kinetic parameters (Km, Vmax, kcat/Km) and storage stabilities at 4°C and room temperature of free and immobilized ureases were determined. Reusability of immobilized urease was investigated in a batch type bioreactor.

Results:  Free and immobilized ureases showed their maximum activities at pHs 7.0 and 6.5, and at temperatures 50 and 60°C, respectively. The Km value of immobilized urease increased 2.2 fold compared to free urease. The catalytic efficiency of immobilized urease was about 0.1% of the free urease.  Free urease completely lost its activity at the end of 5 days stored at 4°C and room temperature; however, immobilized urease did not lose its activity at the end of 19 days at the same conditions. Immobilized urease maintained 50% of its initial activity at the end of 10 reuses in batch type bioreactor.  

Conclusion: Although urease activity significantly decreased upon covalent immobilization onto modified Florisil. However, high storage stability and reusability of immobilized urease makes it potentially useful immobilized form. 


References

  • Krajewska B, Ciurli S. Jack bean (Canavalia ensiformis) urease. Probing acid-base groups of the active site by pH variation. Plant Physiol Biochem 2005;43(7):651-8.
  • Blakely RL, Zerner B. 1984. Jack Bean Urease: The First Nickel Enzyme. J Mol Catal. 1984;23:263–292.
  • Takishima K, Suga T, Mamiya G. The structure of jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues. Eur J Biochem. 1988;175(1):151-65.
  • Cao L, Schmid RD. Carrier-bound Immobilized Enzymes: Principles, Application and Design. Wiley-VCH Verlag GmbH & Co. KGaA. 2006.
  • Wang L, Wang S, Deng X, Zhang Y, Xiong C. Development of coconut shell activated carbon-tethered urease for degradation of urea in a packed bed. ACS Sustainable Chem Eng., 2014;2 (3):433–439.
  • Zhou J, Cao J, Huan W, Huang L, Wang Y, Zhang S, Yuan Y, Huaa D. Preparation and property of urease immobilization with cationic poly(4-vinylpyridine) functionalized colloidal particles. Chem Biochem Eng Q., 2013;27 (4): 431–437.
  • Uygun M, Akduman B, Akgöl S, Denizli A. A new metal-chelated cryogel for reversible immobilization of urease. Appl Biochem Biotechnol. 2013;170(8):1815-26.
  • Ispirli Doğaç Y, Deveci I, Teke M, Mercimek B. TiO₂ beads and TiO₂-chitosan beads for urease immobilization. Mater Sci Eng C Mater Biol Appl. 2014;42:429-35.
  • D'Souza SF, Kumar J, Jha SK, Kubal BS. Immobilization of the urease on eggshell membrane and its application in biosensor. Mater Sci Eng C Mater Biol Appl. 2013;33(2):850-4.
  • Yücebilgiç G, Güşeşçi N, Yıldırım D. Immobilization and characterization of urease onto different spacer arms attached magnetic nanoparticles. New Biotechn. 2016;33:S1–S213.
  • Garg S, De A, Mozumdar S. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles. J Biomed Mater Res A. 2015;103(5):1771-83.
  • Lv M, Ma X, Anderson DP, Chang PR. Immobilization of urease onto cellulose spheres for the selective removal of urea. Cellulose 2018;25:233–243.
  • Tükel SS, Alptekin Ö. Immobilization and kinetics of catalase onto magnesium silicate. Process Biochem. 2004;39(12): 2149-2125.
  • Smith P K, Krohn R.I, Hermanson GT, Mallia AK, Gartner F H, Provenzano M D, Fujimoto EK, Goeke N M, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1): 76-85.
  • Rao MS, Chellapandian M, Krishnan MRV. Immobilization of urease on gelatin — poly (HEMA) copolymer preparation and characterization. Bioprocess Engineering. 1995;13(4):211-214.
  • Wiseman Alan. Handbook of Enzyme Biotechnology. 2nd Edit., John Wiley & Sons, Chichester, England, 1985.
  • Chen JP, Chiu SH. Preparation and characterization of urease immobilized onto porous chitosan beads for urea hydrolysis. Bioprocess Eng. 1999;21:323–330.
  • Alatawi FS, Monier M, Elsayed NH. Amino functionalization of carboxymethyl cellulose for efficient immobilization of urease. Int J Biol Macromol. 2018;114:1018-1025.
  • Moon BM, Choi MJ, Sultan MT, Yang JW, Ju HW, Lee JM, Park HJ, Park YR, Kim SH, Kim DW, Lee MC, Jeong JY, Lee OJ, Sung GY, Park CH. Novel fabrication method of the peritoneal dialysis filter using silk fibroin with urease fixation system. J Biomed Mater Res B Appl Biomater. 2017;105(7):2136-2144.
  • Yeon KH, Lueptow RM. Urease immobilization on an ion-exchange textile for urea hydrolysis. J Chem Technol Biotechnol. 2006; 81:940–950.
  • Doğaç YI, Teke M. Synthesis and characterisation of biocompatible polymer-conjugated magnetic beads for enhancement stability of urease. Appl Biochem Biotechnol. 2016;179(1):94-110.
  • Pozniak, G, Krajewska B, Trochimczuk W. Urease immobilized on modified polysulphone membrane: preparation and properties. Biomater. 1995; 16:129-134.
  • Somtürk B, Yılmaz I, Altınkaynak C, Karatepe A, Özdemir N, Ocsoy I. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol. 2016;86:134-42.
  • Maia MDMD, de Vasconcelos EA, de Mascena Diniz PFC, da Costa Maciel J,Cajueiro KRR, da Silva MDPC, et al. Immobilization of urease on vapour phase stain etched porous silicon. Process Biochem. 2007; 42: 429–433.
  • Rogalski J, Szczodrak J, Pleszczyńsk M, Fiedurek J. Immobilisation and kinetics of Penicillium notatum dextranase on controlled porous glass. J Mole Cataly B Enzym. 1997; 3(6):271-283.
  • Kumar, Sandeep; Kansal, Ajay; Kayastha, Arvind M; Immobilization of jack bean (Canavalia ensiformis) urease on gelatin and its characterization. Oriental Pharmacy and Experimental Medicine. 2005;5(1):43-47.
  • Bayramoğlu G, Altınok H, Bulut A, Denizli A, Arıca MY. Preparation and application of spacer-arm-attached poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) films for urease immobilisation. Reac Func Polym. 2003; 56(2):111-121.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Research
Authors

Özlem Alptekin 0000-0002-0458-7609

Publication Date September 30, 2019
Acceptance Date January 6, 2019
Published in Issue Year 2019

Cite

MLA Alptekin, Özlem. “Üreazın Modifiye Edilmiş Florisile Kovalent Immobilizasyonu Ve Serbest Ve Immobilize üreazın Karakterizasyonu”. Cukurova Medical Journal, vol. 44, no. 3, 2019, pp. 811-8, doi:10.17826/cumj.453980.