Review
BibTex RIS Cite

Role of endoplasmic reticulum stress response in tumorogenesis

Year 2019, Volume: 44 Issue: 1, 241 - 248, 31.03.2019
https://doi.org/10.17826/cumj.480539

Abstract

Endoplasmic Reticulum (ER) is an organelle found in eukaryotic cells, responsible for intracellular calcium homocysteine, lipid synthesis, processing and folding of proteins. The cellular response that occurs in the event of increased folded or unfolded proteins is called endoplasmic reticulum stress. In order to adapt to changing environmental conditions, it is attempted to adapt with the Unfolded Protein Response (UPR), a mechanism that has been preserved evolutionarily. However, in cases where endoplasmic reticulum stress can not be resolved, cell death is triggered via apoptosis. Several molecules such as C/EBP-Homologous Protein (CHOP), A mitogen-activated protein kinase (MAP K) cascade, BCL2 associated X protein (Bax / Bak), Inositol-requiring enzyme 1 (IRE1) and caspase-12 are involved in endoplasmic reticulum stress induces apoptosis pathway. Endoplasmic reticulum stress has a great influence on cancer cell proliferation and survival. Recent investigations have shown that endoplasmic reticulum stress and unfolded protein response play an important role in cancer. Indeed, the unfolded protein response, which plays a role in tumor cell growth and adaptation to environmental changes, has been found to be used as a process that is often favored by cancer cells. Since the existence of some mechanisms that are not fully understood in the unfolded protein response triggered by endoplasmic reticulum stress has affected negatively the process of treatment, fully clarification of these mechanisms leads to understanding of diseases and the development of new treatment strategies. In this review, how the cancer cells can survive via endoplasmic reticulum stress response and proliferation will be discussed in the unfolded protein response axis and an overview will be given to the underlying molecular mechanisms.

References

  • 1. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. 2008. Nat Rev Drug Discov. 7(12):1013-30.
  • 2. Seydel GS., Aksoy K. Endoplazmik Retikulum Stresi ve Apoptozis Mekanizması Archives Medical Review. 2012. Journal. 21(4): 221-235. 3. Anelli, T. & Sitia, R. Protein quality control in the early secretory pathway. 2008. EMBo J. 27, 315–327.
  • 4. Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res. 2005;569(1-2):29-63.
  • 5. Halperin L, Jung J, Michalak M. The many functions of the endoplasmic reticulum chaperones and folding enzymes. 2014. IUBMB Life. 66(5):318-26.
  • 6. Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: Autophagy induction, inhibition and selection. Autophagy. 2015. 2;11(11):1956-1977.
  • 7. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015. 10:173-94.
  • 8. Wang M1, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal. 2009. 11(9):2307-16.
  • 9. Endoplasmic Reticulum Stress and Cancer. Journal Of Cancer Prevention. 2014. 19(2): 75-88.
  • 10. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A,Sonenberg N, et al. Regulation of protein synthesis by hypoxiavia activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. 2002. Mol Cell Biol 22:7405-16.
  • 11. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein responce. 2007. Nat Rev Mol Cell Biol;8:519529.
  • 12. Rozpedek W, Markiewicz L, Diehl JA, Pytel D, Majsterek I. Unfolded Protein Response and PERK Kinase as a New Therapeutic Target in the Pathogenesis of Alzheimer's Disease. 2015. Curr Med Chem. 22(27):3169-84.
  • 13. Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. 2017. Nat Rev Neurol. 13(8):477-491.
  • 14. Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis. 2009. Apoptosis 14:996-1007.
  • 15. Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. 2012. EMBO J;31:1062-79.
  • 16. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. 2009. EMBO J;28:578-90.
  • 17. Kraskiewicz H, FitzGerald U. InterfERing with endoplasmic reticulum stress. 2012. Trends Pharmacol Sci;33:53-63.
  • 18. Wang Y, Alam GN, Ning Y, Visioli F, Dong Z, Nör JE, et al. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. 2012. Cancer Res;72:5396-406. 23.
  • 19. Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. 2013. Oncogene;32:805-18.
  • 20. Xu C1, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. 2005. J Clin Invest.;115(10):2656-64.
  • 21. Marciniak, S., and Ron, D., Endoplasmic reticulum stress signaling in disease. Physiol. Rev., 2006; 86, 1133-1149.
  • 22. Giampietri C, Petrungaro S, Conti S1, Facchiano A, Filippini A, Ziparo E. Cancer Microenvironment and Endoplasmic Reticulum Stress Response. 2015. Mediators Inflamm.;2015:417281.
  • 23. Naidoo, N., ER and aging-Protein folding and the ER stress response. 2009. Ageing Res. Rev.; 8, 150-159
  • 24. Düzgün A, Alaçam H, Okuyucu A, Endoplazmik retikulum stresi ve katlanmamış protein cevabı. 2012. J. Exp. Clin. Med.,; 29:95-100.
  • 25. Stolz, A., Wolf, D.H., Endoplasmic reticulum associated protein degradation: A chaperone assisted journey to hell. 2010. Biochimica et Biophysica Acta 1803, s. 694- 705.
  • 26. Martinon F. Targeting endoplasmic reticulum signaling pathways in cancer. 2012. Acta Oncol.;51:822–30.
  • 27. Kaufman R. J., Orchestrating the unfolded protein response in health and disease. 2002. J Clin Invest, 110, 1389–98.
  • 28. Ni, M. & Lee, A. S. ER chaperones in mammalian development and human diseases. 2007. FEBS Lett., 581, 3641–3651.
  • 29. Rutkowski, D.T., Kaufman, R.J., A trip to the ER: Coping with stress. Trends Cell Biol. 2004; 14, 20-28
  • 30. Gündeflli H, Dinçer P. Endoplazmik retikulum stresinin molekülermekanizması ve kas patolojisi arasındaki ilişki. 2008. Hacettepe Tıp Dergisi; 39:109-114
  • 31. Pytel D, Majsterek I, Diehl JA., Tumor progression and the different faces of the PERK kinase. 2016. Oncogene. Mar 10;35(10):1207-15.
  • 32. Nagelkerke A, Bussink J, Mujcic H, Wouters BG, Lehmann S, Sweep FC, et al., Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. 2013. Breast Cancer Res;15:R2.
  • 33. Clarke HJ, Chambers JE, Liniker E, Marciniak SJ., Endoplasmic Reticulum Stress in Malignancy. 2014. Cancer Cell;25:563-73.
  • 34. Zhu et al, Activating transcription factor 4 mediates a multidrug resistance phenotype of esophageal squamous cell carcinoma cells through transactivation of STAT3 expression, 2014. Cancer Lett., 1;354(1):142-52.
  • 35. Salaroglio IC, Panada E, Moiso E, Buondonno I, Provero P, Rubinstein M, Kopecka J, Riganti C., PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. 2017. Mol Cancer. 12;16(1):91.
  • 36. Urra H, Dufey E, Avril T, Chevet E, Hetz C., Endoplasmic Reticulum Stress and the Hallmarks of Cancer. 2016. Trends Cancer;2(5):252-262.
  • 37. Karali E, Bellou S, Stellas D, Klinakis A, Murphy C, Fotsis T., VEGF signaling, mTOR complexes, and the endoplasmic reticulum: Towards a role of metabolic sensing in the regulation of angiogenesis. 2014. Mol Cell Oncol.; 23;1(3):e964024.
  • 38. Yadav RK, Chae SW, Kim HR, Chae HJ., Endoplasmic Reticulum Stress and Cancer. 2014. J Cancer Prev.;19(2):75-88.
  • 39. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ, Le QT, Koong AC., XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. 2004. Cancer Research; 64:5943-7.
  • 40. Le QT, Denko N, Giaccia A., Hypoxic gene expression and metastasis. 2004. Cancer and Mestastasis Reviews 23:293-310.
  • 41. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N, et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. 2005. EMBO J;24:3470-81.
  • 42. Mujcic H, Nagelkerke A, Rouschop KM, Chung S, Chaudary N, Span PN, Clarke B, Milosevic M, Sykes J, Hill RP, Koritzinsky M, Wouters BG., Hypoxic activation of the PERK/eIF2α arm of the unfolded protein response promotes metastasis through induction of LAMP3. 2013. Clin Cancer Res. 15;19(22):6126-37.
  • 43. Cook KL, Soto-Pantoja DR, Clarke PA, Cruz MI, Zwart A, Wärri A, Hilakivi-Clarke L, Roberts DD, Clarke R., Endoplasmic Reticulum Stress Protein GRP78 Modulates Lipid Metabolism to Control Drug Sensitivity and Antitumor Immunity in Breast Cancer. . 2016 . Cancer Rest. 1;76(19):5657-5670.
  • 44. Rutkowski DT, Kang SW, Goodman AG, Garrison JL, Taunton J, Katze MG, Kaufman RJ, Hegde RS., The role of p58IPK in protecting the stressed endoplasmic reticulum. 2007. Mol Biol Cell. 2007 Sep;18(9):3681-91. Epub 13.
  • 45. Bachar E, Ariav Y, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz et al. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1. 2009. PLoS One.; 4:e4954.
  • 46. Schewe DM, Aguirre-Ghiso JA., ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. 2008. Proc Natl Acad Sci U S A. 29;105(30):10519-24.
  • 47. Potente, M., Urbich, C., Sasaki, K., Hofmann, W.K., Heeschen, C., Aicher, A., Kollipara, R., DePinho, R.A., Zeiher, A.M, Dimmeler S., Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. 2005. J. Clin. Invest.,; 115, 2382–2392.
  • 48. Higa A, Taouji S, Lhomond S, Jensen D, Fernandez-Zapico ME, Simpson JC, Pasquet JM, Schekman R, Chevet E., Endoplasmic reticulum stress-activated transcription factor ATF6α requires the disulfide isomerase PDIA5 to modulate chemoresistance. 2014. Mol Cell Biol.;34(10):1839-49.
  • 49. L. S. Hart, J. T. Cunningham, T. Datta et al., ER stressmediated autophagy promotes Myc-dependent transformation and tumor growth. 2012. Journal of Clinical Investigation, vol. 122, no. 12, pp. 4621–4634.
  • 50. Corazzari M, Gagliardi M, Fimia GM, Piacentini M. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. 2017. Front Oncol. 26;7:78

Tümörogenezisde endoplazmik retikulum stres cevabının rolü

Year 2019, Volume: 44 Issue: 1, 241 - 248, 31.03.2019
https://doi.org/10.17826/cumj.480539

Abstract

Endoplazmik Retikulum (ER) ökaryotik hücrelerde bulunan, hücre içi kalsiyum homoastasizi, lipid sentezi, proteinlerin işlenmesi ve katlanmasından sorumlu olan bir organeldir. Hatalı katlanmış veya katlanmamış proteinlerin artması durumunda ortaya çıkan hücresel cevap endoplazmik retikulum stresi olarak adlandırılır.  Değişen çevre koşullarına adaptasyonu sağlamak amacıyla evrimsel süreçte korunmuş bir mekanizma olan Katlanmamış Protein Cevabı (UPR) ile uyum sağlanmaya çalışılmaktadır. Ancak endoplazmik retikulum stresi ile başa çıkılamadığı durumlarda apopitoz tetiği çekilerek hücre ölümü meydana gelmektedir. Endoplazmik retikulum stresinin indüklediği apopitoz yolağında; CCAAT/enhance binding protein (C/EBP) homolog protein (CHOP), Mitojen tarafından aktive edilmiş protein kinaz (MAP kinaz) kaskadı, Bcl-2-ilişkili X protein (Bax/Bak), İnozitol Gerektiren Kinaz 1 (IRE1) ve kaspaz-12 gibi birçok molekül görev almaktadır. Endoplazmik retikulum stresinin kanser hücresi proliferasyonu ve sağkalımı üzerinde büyük bir etkisi vardır.  Son yapılan araştırmalar endoplazmik retikulum stresi ve katlanmamış protein cevabının, kanserde önemli rol oynadığını göstermiştir. Nitekim, tümör hücrelerinin büyümesinde ve çevresel değişikliklere adaptasyonda rol oynayan katlanmamış protein cevabının, genellikle kanser hücrelerinin lehine çalışan bir süreç olarak kullanıldığı bulunmuştur. Endoplazmik retikulum stresinin tetiklediği katlanmamış protein cevabında tam olarak aydınlatılamamış bazı mekanizmaların varlığı, tedaviye giden süreci olumsuz yönde etkilemekte olduğundan bu mekanizmaların tam olarak aydınlatılmasıyla birlikte; hastalıkların daha iyi anlaşılması ve yeni tedavi stratejilerinin geliştirilmesinin de önü açılacaktır. Bu derlemede; kanser hücrelerinin endoplazmik retikulum stres cevabı ile proliferasyonlarını nasıl sürdürebildikleri, katlanmamış protein cevabı ekseninde ele alınacak ve bunun altında yatan moleküler mekanizmalara genel bir bakış yapılacaktır.

References

  • 1. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. 2008. Nat Rev Drug Discov. 7(12):1013-30.
  • 2. Seydel GS., Aksoy K. Endoplazmik Retikulum Stresi ve Apoptozis Mekanizması Archives Medical Review. 2012. Journal. 21(4): 221-235. 3. Anelli, T. & Sitia, R. Protein quality control in the early secretory pathway. 2008. EMBo J. 27, 315–327.
  • 4. Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res. 2005;569(1-2):29-63.
  • 5. Halperin L, Jung J, Michalak M. The many functions of the endoplasmic reticulum chaperones and folding enzymes. 2014. IUBMB Life. 66(5):318-26.
  • 6. Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: Autophagy induction, inhibition and selection. Autophagy. 2015. 2;11(11):1956-1977.
  • 7. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015. 10:173-94.
  • 8. Wang M1, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal. 2009. 11(9):2307-16.
  • 9. Endoplasmic Reticulum Stress and Cancer. Journal Of Cancer Prevention. 2014. 19(2): 75-88.
  • 10. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A,Sonenberg N, et al. Regulation of protein synthesis by hypoxiavia activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. 2002. Mol Cell Biol 22:7405-16.
  • 11. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein responce. 2007. Nat Rev Mol Cell Biol;8:519529.
  • 12. Rozpedek W, Markiewicz L, Diehl JA, Pytel D, Majsterek I. Unfolded Protein Response and PERK Kinase as a New Therapeutic Target in the Pathogenesis of Alzheimer's Disease. 2015. Curr Med Chem. 22(27):3169-84.
  • 13. Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. 2017. Nat Rev Neurol. 13(8):477-491.
  • 14. Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis. 2009. Apoptosis 14:996-1007.
  • 15. Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. 2012. EMBO J;31:1062-79.
  • 16. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. 2009. EMBO J;28:578-90.
  • 17. Kraskiewicz H, FitzGerald U. InterfERing with endoplasmic reticulum stress. 2012. Trends Pharmacol Sci;33:53-63.
  • 18. Wang Y, Alam GN, Ning Y, Visioli F, Dong Z, Nör JE, et al. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. 2012. Cancer Res;72:5396-406. 23.
  • 19. Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. 2013. Oncogene;32:805-18.
  • 20. Xu C1, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. 2005. J Clin Invest.;115(10):2656-64.
  • 21. Marciniak, S., and Ron, D., Endoplasmic reticulum stress signaling in disease. Physiol. Rev., 2006; 86, 1133-1149.
  • 22. Giampietri C, Petrungaro S, Conti S1, Facchiano A, Filippini A, Ziparo E. Cancer Microenvironment and Endoplasmic Reticulum Stress Response. 2015. Mediators Inflamm.;2015:417281.
  • 23. Naidoo, N., ER and aging-Protein folding and the ER stress response. 2009. Ageing Res. Rev.; 8, 150-159
  • 24. Düzgün A, Alaçam H, Okuyucu A, Endoplazmik retikulum stresi ve katlanmamış protein cevabı. 2012. J. Exp. Clin. Med.,; 29:95-100.
  • 25. Stolz, A., Wolf, D.H., Endoplasmic reticulum associated protein degradation: A chaperone assisted journey to hell. 2010. Biochimica et Biophysica Acta 1803, s. 694- 705.
  • 26. Martinon F. Targeting endoplasmic reticulum signaling pathways in cancer. 2012. Acta Oncol.;51:822–30.
  • 27. Kaufman R. J., Orchestrating the unfolded protein response in health and disease. 2002. J Clin Invest, 110, 1389–98.
  • 28. Ni, M. & Lee, A. S. ER chaperones in mammalian development and human diseases. 2007. FEBS Lett., 581, 3641–3651.
  • 29. Rutkowski, D.T., Kaufman, R.J., A trip to the ER: Coping with stress. Trends Cell Biol. 2004; 14, 20-28
  • 30. Gündeflli H, Dinçer P. Endoplazmik retikulum stresinin molekülermekanizması ve kas patolojisi arasındaki ilişki. 2008. Hacettepe Tıp Dergisi; 39:109-114
  • 31. Pytel D, Majsterek I, Diehl JA., Tumor progression and the different faces of the PERK kinase. 2016. Oncogene. Mar 10;35(10):1207-15.
  • 32. Nagelkerke A, Bussink J, Mujcic H, Wouters BG, Lehmann S, Sweep FC, et al., Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. 2013. Breast Cancer Res;15:R2.
  • 33. Clarke HJ, Chambers JE, Liniker E, Marciniak SJ., Endoplasmic Reticulum Stress in Malignancy. 2014. Cancer Cell;25:563-73.
  • 34. Zhu et al, Activating transcription factor 4 mediates a multidrug resistance phenotype of esophageal squamous cell carcinoma cells through transactivation of STAT3 expression, 2014. Cancer Lett., 1;354(1):142-52.
  • 35. Salaroglio IC, Panada E, Moiso E, Buondonno I, Provero P, Rubinstein M, Kopecka J, Riganti C., PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. 2017. Mol Cancer. 12;16(1):91.
  • 36. Urra H, Dufey E, Avril T, Chevet E, Hetz C., Endoplasmic Reticulum Stress and the Hallmarks of Cancer. 2016. Trends Cancer;2(5):252-262.
  • 37. Karali E, Bellou S, Stellas D, Klinakis A, Murphy C, Fotsis T., VEGF signaling, mTOR complexes, and the endoplasmic reticulum: Towards a role of metabolic sensing in the regulation of angiogenesis. 2014. Mol Cell Oncol.; 23;1(3):e964024.
  • 38. Yadav RK, Chae SW, Kim HR, Chae HJ., Endoplasmic Reticulum Stress and Cancer. 2014. J Cancer Prev.;19(2):75-88.
  • 39. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ, Le QT, Koong AC., XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. 2004. Cancer Research; 64:5943-7.
  • 40. Le QT, Denko N, Giaccia A., Hypoxic gene expression and metastasis. 2004. Cancer and Mestastasis Reviews 23:293-310.
  • 41. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N, et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. 2005. EMBO J;24:3470-81.
  • 42. Mujcic H, Nagelkerke A, Rouschop KM, Chung S, Chaudary N, Span PN, Clarke B, Milosevic M, Sykes J, Hill RP, Koritzinsky M, Wouters BG., Hypoxic activation of the PERK/eIF2α arm of the unfolded protein response promotes metastasis through induction of LAMP3. 2013. Clin Cancer Res. 15;19(22):6126-37.
  • 43. Cook KL, Soto-Pantoja DR, Clarke PA, Cruz MI, Zwart A, Wärri A, Hilakivi-Clarke L, Roberts DD, Clarke R., Endoplasmic Reticulum Stress Protein GRP78 Modulates Lipid Metabolism to Control Drug Sensitivity and Antitumor Immunity in Breast Cancer. . 2016 . Cancer Rest. 1;76(19):5657-5670.
  • 44. Rutkowski DT, Kang SW, Goodman AG, Garrison JL, Taunton J, Katze MG, Kaufman RJ, Hegde RS., The role of p58IPK in protecting the stressed endoplasmic reticulum. 2007. Mol Biol Cell. 2007 Sep;18(9):3681-91. Epub 13.
  • 45. Bachar E, Ariav Y, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz et al. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1. 2009. PLoS One.; 4:e4954.
  • 46. Schewe DM, Aguirre-Ghiso JA., ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. 2008. Proc Natl Acad Sci U S A. 29;105(30):10519-24.
  • 47. Potente, M., Urbich, C., Sasaki, K., Hofmann, W.K., Heeschen, C., Aicher, A., Kollipara, R., DePinho, R.A., Zeiher, A.M, Dimmeler S., Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. 2005. J. Clin. Invest.,; 115, 2382–2392.
  • 48. Higa A, Taouji S, Lhomond S, Jensen D, Fernandez-Zapico ME, Simpson JC, Pasquet JM, Schekman R, Chevet E., Endoplasmic reticulum stress-activated transcription factor ATF6α requires the disulfide isomerase PDIA5 to modulate chemoresistance. 2014. Mol Cell Biol.;34(10):1839-49.
  • 49. L. S. Hart, J. T. Cunningham, T. Datta et al., ER stressmediated autophagy promotes Myc-dependent transformation and tumor growth. 2012. Journal of Clinical Investigation, vol. 122, no. 12, pp. 4621–4634.
  • 50. Corazzari M, Gagliardi M, Fimia GM, Piacentini M. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. 2017. Front Oncol. 26;7:78
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Review
Authors

Gülşah Evyapan 0000-0001-9870-4783

Gülsevinç Ay 0000-0002-1300-4532

Gamze Cömertpay This is me 0000-0002-3020-1466

H. Ümit Lüleyap 0000-0001-8759-1381

Publication Date March 31, 2019
Acceptance Date November 28, 2018
Published in Issue Year 2019 Volume: 44 Issue: 1

Cite

MLA Evyapan, Gülşah et al. “Tümörogenezisde Endoplazmik Retikulum Stres cevabının Rolü”. Cukurova Medical Journal, vol. 44, no. 1, 2019, pp. 241-8, doi:10.17826/cumj.480539.