Research Article
BibTex RIS Cite

Üç farklı yüksek ses frekansına maruz kalmış Culex pipiens (L.) (Diptera: Culicidae) larvalarında değişen mortal etkiler

Year 2019, Volume: 44 Issue: 3, 970 - 976, 30.09.2019
https://doi.org/10.17826/cumj.507991

Abstract

Amaç: Çalışmamızın amacı, Culex pipiens larvalarına farklı ses frekansları (ultrasonik değer altı ve üstü), uygulanarak, larvalar üzerindeki mortalite etkisini istatistiksel olarak araştırılmasıdır.

Gereç ve Yöntem: Toplamda sekiz saat süren deneylerimizde, 3 farklı düzeyde (14,8 kHz, 20,0 kHz ve 26.5 kHz) ses frekansı üreten piezo transdüktörlü modifiye kaplarda bulunan 240 adet sivrisinek larvası kullanılmıştır. 

Bulgular: Denemelerimizde kullanılan toplam 240 Culex pipiens larvasının 121’i, uygulanan ses frekanslarının tümünde ölmüştür. İkinci evre larvalar, kullanılan ses frekanslarına hassasiyeti en fazla olan evre olarak tespit edilmiştir. Denememizde, 14,8 kHz’lik ultrasonik ses frekansının, en fazla mortaliteye neden olduğu saptanmıştır.

Sonuç: Çalışmamızda kullandığımız ses frekansları (ultrasonik değer altı ve üstü) sivrisinek larvaları üzerinde değişen oranlarda mortal etkiler göstermiştir. Farklı mortalite değerleri, sivrisinek larvaları arasında akustik rezonans değerlerinin farklı olduğunu göstermektedir. Ayrıca erken evre larvalarda (L1 ve L2) mortalitenin yüksek olması çeşitli morfolojik sebeplerden meydana gelebilmektedir. 


References

  • 1. Özkul A, Yıldırım Y, Pınar D, Akçalı A, Yılmaz V, Çolak D. Serological evidence of West Nile Virus (WNV) in mammalian species in Turkey. Epidemiol. Infect. 2006; 134:826–829.
  • 2. İnci A, Düzlü Ö. Vektörler ve Vektörlerle Bulaşan Hastalıklar. Erciyes Üniv Vet Fak Derg. 2009;6(1):53-63.
  • 3. Kavur H, Deveci Ö, Boyacıoğlu H. Kitin Sentez İnhibitörü Diflubenzuron’un Culex pipiens (L.) ve Culiseta longiareolata (Macquart)’nın (Diptera: Culicidae) Larvaları Üzerine Etkileri. Turkiye Parazitol Derg. 2011;35:154-8.
  • 4. Günay F, Alten B, Şimşek F, Aldemir A, Linton YM. Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors. Acta Tropica 2015;143:112–120.
  • 5. WHO (World Health Organization), World Malaria Report 2005.
  • 6. Alten B, Çağlar SS. Vektör Ekolojisi ve Mücadelesi, T.C. Sağlık Bakanlığı Sağlık Projesi Genel Koord., Bizim Büro Basımevi, Ankara. 242 s. 1998.
  • 7. Berg H, Zaim M, Yadav RS, Soares A, Ameneshewa B, Mnzava A, Hii J, Dash AP, Ejov M. Global Trends in the Use of Insecticides to Control Vector-Borne Diseases. Environmental Health Perspectives. 2012;120(4):577-582.
  • 8. Wilkerson RC, Linton YM, Fonseca DM, Schultz TR, Price DC, Strickman DA. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships. PLoS ONE. 2015;10(7):1-26.
  • 9. Faulde MK, Spiesberger M, Abbas B. Sentinel Site-Enhanced Near-Real Time Surveillance Documenting West Nile Virus Circulation in Two Culex Mosquito Species Indicating Different Transmission Characteristics, Djibouti Cıty, Djibouti. J. Egypt .Soc. Parasitol. 2012;42(2):461– 474.
  • 10. Aflitto N, DeGomez T. Sonic Pest Repellents. The University of Arizona Cooperative Extension. 2014; 1-4.
  • 11. Özkurt H, Altuntaş Ö. The Effects of Sound Waves upon Plant Nutrient Elements Uptake of Sword Fern (Nephrolepis Exaltata). Plants. J. Basic. Appl. Sci. Res. 2016;6(3):9-15.
  • 12. Cetinkaya A. The Sound Analysis of Some Insect Species and the Investigation of Availability, Agricultural Struggle, Msc Thesis, Çukurova University. 2010.
  • 13. İşçi C. Ultrasonik Ve Diğer Sivrisinek Kovucular. Journal of Yasar University. 2006:1(4);293-301.
  • 14. Nyberg MH, Nyberg HJ. U.S. Patent No. 4,284,845, 8/1981.
  • 15. Kuşcu F, Öztürk DB, Gül S, Babayiğit ML. Adana’da 2002-2012 Yılları Arasında Sıtma Epidemiyolojisi. Turkiye Parazitol Derg. 2014;38:147-50.
  • 16. Fredregill CL, Motl GC, Dennett JA, Bueno R, Debboun M. fficacy of Two Larvasonic™ Units Against Culex Larvae and Effects on Common Aquatic Nontarget Organisms in Harris County, Texas. J Am Mosq Control Assoc. 2015;31(4):366-70.
  • 17. Okorie PN, Okareh OT, Adeleke O, Falade CO, Ademowo OG. Effects of an in-built ultrasonic device on Anopheles gambiae s.l mosquitoes in an indoor environment. International Research Journal of Engineering Science, Technology and Innovation. 2015;4(1):5-11.
  • 18. New Mountain. Basics of Acoustics. http://www.newmountain.com/education. (Erişim Ocak 2019).
  • 19. LaLiberte G, Haber E. Literature Review of the Effects of Ultrasonic Waves on Cyanobacteria, Other Aquatic Organisms, and Water Quality. Wisconsin Department of Natural Resource. Research Report. 2014.
  • 20. Britch SC, Nyberg H, Aldridge RL, Swan T, Linthicum KJ. Acoustic Control of Mosquito Larvae in Artificial Drinking Water Containers. J Am Mosq Control Asso. 2016;32(4):341–344.
  • 21. Khalfia NO, Ibrahim DSA, Khairy RMY, Omer RMY. The effect of the ultrasound waves on mosquitoes. College of Science Department of Scientific Laboratories-Physics research group. Scientific Report. 2016.

Variable mortal effects in larvae of Culex pipiens (L.) (Diptera: Culicidae) exposed to three different high sound frequencies

Year 2019, Volume: 44 Issue: 3, 970 - 976, 30.09.2019
https://doi.org/10.17826/cumj.507991

Abstract

Purpose: The aim of our study was to evaluate the mortality rate of Culex pipiens larvae which were subjected to ultrasonic values above and below sound frequencies.

Materials and Methods: In our lasting eight-hour experiments, 240 mosquito larvae in piezo-transducer modified vessels producing sound frequency at three different levels (14.8 kHz, 20.0 kHz and 26.5 kHz) were used. 

Results: Of the 240 Culex pipiens larvae used in our experiments, 121 of them died in all of the applied sound frequencies. The second stage larvae were found to be the most sensitive to the frequencies used. In our study, 14.8 kHz ultrasonic sound frequency was found to cause the highest mortality.

Conclusion: Sound frequencies under and above ultrasonic show a varying proportions mortal effect on mosquito larvae. Different mortality values show that acoustic resonance values are different among the mosquito instars. Furthermore, the high mortality rate in early stage larvae (L1 and L2) may be due to various morphological reasons.


References

  • 1. Özkul A, Yıldırım Y, Pınar D, Akçalı A, Yılmaz V, Çolak D. Serological evidence of West Nile Virus (WNV) in mammalian species in Turkey. Epidemiol. Infect. 2006; 134:826–829.
  • 2. İnci A, Düzlü Ö. Vektörler ve Vektörlerle Bulaşan Hastalıklar. Erciyes Üniv Vet Fak Derg. 2009;6(1):53-63.
  • 3. Kavur H, Deveci Ö, Boyacıoğlu H. Kitin Sentez İnhibitörü Diflubenzuron’un Culex pipiens (L.) ve Culiseta longiareolata (Macquart)’nın (Diptera: Culicidae) Larvaları Üzerine Etkileri. Turkiye Parazitol Derg. 2011;35:154-8.
  • 4. Günay F, Alten B, Şimşek F, Aldemir A, Linton YM. Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors. Acta Tropica 2015;143:112–120.
  • 5. WHO (World Health Organization), World Malaria Report 2005.
  • 6. Alten B, Çağlar SS. Vektör Ekolojisi ve Mücadelesi, T.C. Sağlık Bakanlığı Sağlık Projesi Genel Koord., Bizim Büro Basımevi, Ankara. 242 s. 1998.
  • 7. Berg H, Zaim M, Yadav RS, Soares A, Ameneshewa B, Mnzava A, Hii J, Dash AP, Ejov M. Global Trends in the Use of Insecticides to Control Vector-Borne Diseases. Environmental Health Perspectives. 2012;120(4):577-582.
  • 8. Wilkerson RC, Linton YM, Fonseca DM, Schultz TR, Price DC, Strickman DA. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships. PLoS ONE. 2015;10(7):1-26.
  • 9. Faulde MK, Spiesberger M, Abbas B. Sentinel Site-Enhanced Near-Real Time Surveillance Documenting West Nile Virus Circulation in Two Culex Mosquito Species Indicating Different Transmission Characteristics, Djibouti Cıty, Djibouti. J. Egypt .Soc. Parasitol. 2012;42(2):461– 474.
  • 10. Aflitto N, DeGomez T. Sonic Pest Repellents. The University of Arizona Cooperative Extension. 2014; 1-4.
  • 11. Özkurt H, Altuntaş Ö. The Effects of Sound Waves upon Plant Nutrient Elements Uptake of Sword Fern (Nephrolepis Exaltata). Plants. J. Basic. Appl. Sci. Res. 2016;6(3):9-15.
  • 12. Cetinkaya A. The Sound Analysis of Some Insect Species and the Investigation of Availability, Agricultural Struggle, Msc Thesis, Çukurova University. 2010.
  • 13. İşçi C. Ultrasonik Ve Diğer Sivrisinek Kovucular. Journal of Yasar University. 2006:1(4);293-301.
  • 14. Nyberg MH, Nyberg HJ. U.S. Patent No. 4,284,845, 8/1981.
  • 15. Kuşcu F, Öztürk DB, Gül S, Babayiğit ML. Adana’da 2002-2012 Yılları Arasında Sıtma Epidemiyolojisi. Turkiye Parazitol Derg. 2014;38:147-50.
  • 16. Fredregill CL, Motl GC, Dennett JA, Bueno R, Debboun M. fficacy of Two Larvasonic™ Units Against Culex Larvae and Effects on Common Aquatic Nontarget Organisms in Harris County, Texas. J Am Mosq Control Assoc. 2015;31(4):366-70.
  • 17. Okorie PN, Okareh OT, Adeleke O, Falade CO, Ademowo OG. Effects of an in-built ultrasonic device on Anopheles gambiae s.l mosquitoes in an indoor environment. International Research Journal of Engineering Science, Technology and Innovation. 2015;4(1):5-11.
  • 18. New Mountain. Basics of Acoustics. http://www.newmountain.com/education. (Erişim Ocak 2019).
  • 19. LaLiberte G, Haber E. Literature Review of the Effects of Ultrasonic Waves on Cyanobacteria, Other Aquatic Organisms, and Water Quality. Wisconsin Department of Natural Resource. Research Report. 2014.
  • 20. Britch SC, Nyberg H, Aldridge RL, Swan T, Linthicum KJ. Acoustic Control of Mosquito Larvae in Artificial Drinking Water Containers. J Am Mosq Control Asso. 2016;32(4):341–344.
  • 21. Khalfia NO, Ibrahim DSA, Khairy RMY, Omer RMY. The effect of the ultrasound waves on mosquitoes. College of Science Department of Scientific Laboratories-Physics research group. Scientific Report. 2016.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Research
Authors

Halil Özkurt 0000-0002-9828-3250

Hakan Kavur 0000-0002-4188-440X

Publication Date September 30, 2019
Acceptance Date February 11, 2019
Published in Issue Year 2019 Volume: 44 Issue: 3

Cite

MLA Özkurt, Halil and Hakan Kavur. “Üç Farklı yüksek Ses frekansına Maruz kalmış Culex Pipiens (L.) (Diptera: Culicidae) larvalarında değişen Mortal Etkiler”. Cukurova Medical Journal, vol. 44, no. 3, 2019, pp. 970-6, doi:10.17826/cumj.507991.